Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(1): 510-4, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24368848

RESUMO

Alzheimer's disease (AD) is pathologically characterized by the deposition of extracellular amyloid-ß plaques and intracellular aggregation of tau protein in neurofibrillary tangles (NFTs) (1, 2). Progression of NFT pathology is closely correlated with both increased neurodegeneration and cognitive decline in AD (3) and other tauopathies, such as frontotemporal dementia (4, 5). The assumption that mislocalization of tau into the somatodendritic compartment (6) and accumulation of fibrillar aggregates in NFTs mediates neurodegeneration underlies most current therapeutic strategies aimed at preventing NFT formation or disrupting existing NFTs (7, 8). Although several disease-associated mutations cause both aggregation of tau and neurodegeneration, whether NFTs per se contribute to neuronal and network dysfunction in vivo is unknown (9). Here we used awake in vivo two-photon calcium imaging to monitor neuronal function in adult rTg4510 mice that overexpress a human mutant form of tau (P301L) and develop cortical NFTs by the age of 7-8 mo (10). Unexpectedly, NFT-bearing neurons in the visual cortex appeared to be completely functionally intact, to be capable of integrating dendritic inputs and effectively encoding orientation and direction selectivity, and to have a stable baseline resting calcium level. These results suggest a reevaluation of the common assumption that insoluble tau aggregates are sufficient to disrupt neuronal function.


Assuntos
Emaranhados Neurofibrilares/metabolismo , Proteínas tau/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Cálcio/metabolismo , Dependovirus/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Neurológicos , Mutação , Neurônios/patologia , Fótons , Tauopatias/patologia , Transgenes , Proteínas tau/metabolismo
2.
Sci Rep ; 9(1): 8964, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221985

RESUMO

Neuronal activity patterns are disrupted in neurodegenerative disorders, including Alzheimer's disease (AD). One example is disruption of corticothalamic slow oscillations responsible for sleep-dependent memory consolidation. Slow waves are periodic oscillations in neuronal activity occurring at frequencies of <1 Hz. The power, but not the frequency of slow oscillations is altered in a mouse model of AD. Optogenetic rescue of slow oscillations by increasing activity in cortical pyramidal neurons at the frequency of slow waves restores slow wave power, halts deposition of amyloid plaques and prevents neuronal calcium dysregulation. Here we determined whether driving this circuit at an increased rate would exacerbate the amyloid-dependent calcium dyshomeostasis in transgenic mice. Doubling the frequency of slow waves for one month with optogenetics resulted in increased amyloid beta - dependent disruptions in neuronal calcium homeostasis and loss of synaptic spines. Therefore, while restoration of physiological circuit dynamics is sufficient to abrogate the progression of Alzheimer's disease pathology and should be considered an avenue for clinical treatment of AD patients with sleep disorders, pathophysiological stimulation of neuronal circuits leads to activity - dependent acceleration of amyloid production, aggregation and downstream neuronal dysfunction.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Suscetibilidade a Doenças , Doença de Alzheimer/metabolismo , Amiloide/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Neurônios/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Placa Amiloide/etiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Transmissão Sináptica
3.
PLoS One ; 12(1): e0170275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28114405

RESUMO

Slow oscillations are important for consolidation of memory during sleep, and Alzheimer's disease (AD) patients experience memory disturbances. Thus, we examined slow oscillation activity in an animal model of AD. APP mice exhibit aberrant slow oscillation activity. Aberrant inhibitory activity within the cortical circuit was responsible for slow oscillation dysfunction, since topical application of GABA restored slow oscillations in APP mice. In addition, light activation of channelrhodopsin-2 (ChR2) expressed in excitatory cortical neurons restored slow oscillations by synchronizing neuronal activity. Driving slow oscillation activity with ChR2 halted amyloid plaque deposition and prevented calcium overload associated with this pathology. Thus, targeting slow oscillatory activity in AD patients might prevent neurodegenerative phenotypes and slow disease progression.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Homeostase , Optogenética , Doença de Alzheimer/genética , Animais , Regulação para Baixo , Humanos , Camundongos , Camundongos Transgênicos , Ácido gama-Aminobutírico/metabolismo
4.
Acta Neuropathol Commun ; 2: 63, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24915991

RESUMO

Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.


Assuntos
Complexo Relacionado com a AIDS/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Tauopatias/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Vias Neurais/metabolismo , Vias Neurais/patologia , Emaranhados Neurofibrilares/metabolismo , Estimulação Luminosa , Tauopatias/genética , Proteínas tau/genética
5.
Nat Neurosci ; 15(10): 1422-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922786

RESUMO

Experience-induced expression of immediate-early gene Arc (also known as Arg3.1) is known to be important for consolidation of memory. Using in vivo longitudinal multiphoton imaging, we found orchestrated activity-dependent expression of Arc in the mouse extrastriate visual cortex in response to a structured visual stimulation. In wild-type mice, the amplitude of the Arc response in individual neurons strongly predicted the probability of reactivation by a subsequent presentation of the same stimulus. In a mouse model of Alzheimer's disease, this association was markedly disrupted in the cortex, specifically near senile plaques. Neurons in the vicinity of plaques were less likely to respond, but, paradoxically, there were stronger responses in those few neurons around plaques that did respond. To the extent that the orchestrated pattern of Arc expression reflects nervous system responses to and physiological consolidation of behavioral experience, the disruption in Arc patterns reveals plaque-associated interference with neural network integration.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Córtex Visual/metabolismo , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/metabolismo , Estimulação Luminosa/métodos , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa