Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 204(1): 161-172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180565

RESUMO

Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus). We measured fat and lean mass in adults of both sexes using quantitative magnetic resonance (QMR). We measured body mass and two measures of skeletal structure (zygomatic width and right hind foot length) to develop sex- and species-specific BCIs, and tested the utility of BCI to predict body composition in each species. Body condition indices were more consistently, and more strongly correlated, with lean mass than fat mass. The indices were most positively correlated with fat when fat was expected to be very high (pre-hibernation prairie dogs). In all cases, however, BCI was never better than body mass alone in predicting fat or lean mass. While the accuracy of BCI in estimating fat varied across the natural histories and annual energetic patterns of the species considered, measuring body mass alone was as effective, or superior in capturing sufficient variation in fat and lean in most cases.


Assuntos
Composição Corporal , Alimentos , Humanos , Masculino , Feminino , Animais , Composição Corporal/fisiologia , Sciuridae/fisiologia , Especificidade da Espécie
2.
Nat Commun ; 15(1): 4240, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762491

RESUMO

Despite a wealth of studies documenting prey responses to perceived predation risk, researchers have only recently begun to consider how prey integrate information from multiple cues in their assessment of risk. We conduct a systematic review and meta-analysis of studies that experimentally manipulated perceived predation risk in birds and evaluate support for three alternative models of cue integration: redundancy/equivalence, enhancement, and antagonism. One key insight from our analysis is that the current theory, generally applied to study cue integration in animals, is incomplete. These theories specify the effects of increasing information level on mean, but not variance, in responses. In contrast, we show that providing multiple complementary cues of predation risk simultaneously does not affect mean response. Instead, as information richness increases, populations appear to assess risk more accurately, resulting in lower among-population variance in response to manipulations of perceived predation risk. We show that this may arise via a statistical process called maximum-likelihood estimation (MLE) integration. Our meta-analysis illustrates how explicit consideration of variance in responses can yield important biological insights.


Assuntos
Aves , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Aves/fisiologia , Medição de Risco , Sinais (Psicologia) , Cadeia Alimentar , Funções Verossimilhança
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa