Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(5): 1369-1380.e15, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184075

RESUMO

BACKGROUND: Solar urticaria is a rare photodermatosis characterized by rapid-onset sunlight-induced urticaria, but its pathophysiology is not well understood. OBJECTIVE: We sought to define cutaneous cellular and molecular events in the evolution of solar urticaria following its initiation by solar-simulated UV radiation (SSR) and compare with healthy controls (HC). METHODS: Cutaneous biopsy specimens were taken from unexposed skin and skin exposed to a single low (physiologic) dose of SSR at 30 minutes, 3 hours, and 24 hours after exposure in 6 patients with solar urticaria and 6 HC. Biopsy specimens were assessed by immunohistochemistry and bulk RNA-sequencing analysis. RESULTS: In solar urticaria specimens, there was enrichment of several innate immune pathways, with striking early involvement of neutrophils, which was not observed in HC. Multiple proinflammatory cytokine and chemokine genes were upregulated (including IL20, IL6, and CXCL8) or identified as upstream regulators (including TNF, IL-1ß, and IFN-γ). IgE and FcεRI were identified as upstream regulators, and phosphorylated signal transducer and activator of transcription 3 expression in mast cells was increased in solar urticaria at 30 minutes and 3 hours after SSR exposure, suggesting a mechanism of mast cell activation. Clinical resolution of solar urticaria by 24 hours mirrored resolution of inflammatory gene signature profiles. Comparison with available datasets of chronic spontaneous urticaria showed transcriptomic similarities relating to immune activation, but several transcripts were identified solely in solar urticaria, including CXCL8 and CSF2/3. CONCLUSIONS: Solar urticaria is characterized by rapid signal transducer and activator of transcription 3 activation in mast cells and involvement of multiple chemotactic and innate inflammatory pathways, with FcεRI engagement indicated as an early event.


Assuntos
Mastócitos , Infiltração de Neutrófilos , Receptores de IgE , Fator de Transcrição STAT3 , Urticária , Humanos , Urticária/imunologia , Mastócitos/imunologia , Receptores de IgE/genética , Feminino , Adulto , Fator de Transcrição STAT3/metabolismo , Masculino , Infiltração de Neutrófilos/imunologia , Pessoa de Meia-Idade , Pele/imunologia , Pele/patologia , Luz Solar/efeitos adversos , Citocinas/metabolismo , Citocinas/imunologia , Transtornos de Fotossensibilidade/imunologia , Raios Ultravioleta/efeitos adversos , Neutrófilos/imunologia , Urticária Solar
2.
PLoS Biol ; 16(5): e2003705, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29738529

RESUMO

Hair growth disorders often carry a major psychological burden. Therefore, more effective human hair growth-modulatory agents urgently need to be developed. Here, we used the hypertrichosis-inducing immunosuppressant, Cyclosporine A (CsA), as a lead compound to identify new hair growth-promoting molecular targets. Through microarray analysis we identified the Wnt inhibitor, secreted frizzled related protein 1 (SFRP1), as being down-regulated in the dermal papilla (DP) of CsA-treated human scalp hair follicles (HFs) ex vivo. Therefore, we further investigated the function of SFRP1 using a pharmacological approach and found that SFRP1 regulates intrafollicular canonical Wnt/ß-catenin activity through inhibition of Wnt ligands in the human hair bulb. Conversely, inhibiting SFRP1 activity through the SFRP1 antagonist, WAY-316606, enhanced hair shaft production, hair shaft keratin expression, and inhibited spontaneous HF regression (catagen) ex vivo. Collectively, these data (a) identify Wnt signalling as a novel, non-immune-inhibitory CsA target; (b) introduce SFRP1 as a physiologically important regulator of canonical ß-catenin activity in a human (mini-)organ; and (c) demonstrate WAY-316606 to be a promising new promoter of human hair growth. Since inhibiting SFRP1 only facilitates Wnt signalling through ligands that are already present, this 'ligand-limited' therapeutic strategy for promoting human hair growth may circumvent potential oncological risks associated with chronic Wnt over-activation.


Assuntos
Alopecia/tratamento farmacológico , Ciclosporina/uso terapêutico , Folículo Piloso/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Ciclosporina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Técnicas de Cultura de Órgãos
3.
Exp Dermatol ; 25(9): 663-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094702

RESUMO

The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.


Assuntos
Folículo Piloso/citologia , Proliferação de Células , Folículo Piloso/fisiologia , Humanos
4.
Trends Pharmacol Sci ; 42(5): 316-328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752908

RESUMO

The immunophilin ligand, cyclosporine A (CsA), which inhibits nuclear factor of activated T cells (NFAT) activity, is a cornerstone of immunosuppressive therapy. Yet, the molecular basis of its prominent, nonimmunosuppression-related adverse skin effects, namely drug-induced excessive hair growth (hypertrichosis), is insufficiently understood. Here, we argue that analysis of these adverse effects can uncover clinically important, previously unknown mechanisms of CsA and identify new molecular targets and lead compounds for therapeutic intervention. We exemplify this through our recent discovery that CsA suppresses the potent Wnt inhibitor, secreted frizzled related protein (SFRP)1, in human hair follicles, thereby promoting hair growth and causing hypertrichosis. On this basis, we advocate a new focus on deciphering the molecular basis of the adverse effects of CsA in suitable human model systems as a lead to developing novel therapeutics.


Assuntos
Ciclosporina , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ciclosporina/efeitos adversos , Humanos , Imunossupressores , Ligantes , Fatores de Transcrição NFATC
5.
Elife ; 102021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939928

RESUMO

Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing, and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt signalling in skin, stimulation of fibroblast proliferation by epidermal ß-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4- and CD8-positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins, and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.


Assuntos
Linhagem da Célula/efeitos da radiação , Fibroblastos/efeitos da radiação , Regeneração/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Adulto , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
6.
Clin Transl Immunology ; 9(4): e01104, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257209

RESUMO

OBJECTIVES: Solar ultraviolet radiation (UVR) has major adverse effects on human health. While the mechanisms responsible for induction of UVR-induced inflammation are well-documented, the mediation of its resolution and longer-term adaptive homeostasis is unknown. Therefore, we examined the skin immune and lipid profile over time following UVR inflammation. METHODS: To investigate the self-resolving events of UVR inflammation in vivo, human skin was exposed to a single pro-inflammatory dose of UVR. Skin biopsies and suction blister fluid were taken at intervals up to 2 weeks post-UVR. The immune infiltrate was quantified by immunohistochemistry, and lipid mediators were profiled by liquid chromatography/mass spectrometry. RESULTS: We identified that cellular resolution events including switching of macrophage phenotype apply to human sunburn. However, UVR-induced inflammation in humans involves a post-resolution phase that differs from other experimental models. We demonstrate that 2 weeks after the initiating UVR stimulus, there is considerable immune activity with CD8+GATA3+ T cells maintained in human skin. Our results challenge the dogma of CD4+FOXP3+ T cells being the main effector CD4+ T-cell population following UVR, with CD4+GATA3+ T cells the dominant phenotype. Furthermore, lipid mediators are elevated 14 days post-UVR, demonstrating the skin lipid microenvironment does not revert to the tissue setting occurring prior to UVR exposure. CONCLUSION: We have identified for the first time that CD4+GATA3+ and CD8+GATA3+ T-cell subpopulations are recruited to UVR-inflamed human skin, demonstrating discrepancies between the adaptive UVR response in mice and humans. Future strategies to abrogate UVR effects may target these T-cell subpopulations and also the persistent alteration of the lipid microenvironment post-UVR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa