Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240339, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654649

RESUMO

Birdsongs are among the most distinctive animal signals. Their evolution is thought to be shaped simultaneously by habitat structure and by the constraints of morphology. Habitat structure affects song transmission and detectability, thus influencing song (the acoustic adaptation hypothesis), while body size and beak size and shape necessarily constrain song characteristics (the morphological constraint hypothesis). Yet, support for the acoustic adaptation and morphological constraint hypotheses remains equivocal, and their simultaneous examination is infrequent. Using a phenotypically diverse Australasian bird clade, the honeyeaters (Aves: Meliphagidae), we compile a dataset consisting of song, environmental, and morphological variables for 163 species and jointly examine predictions of these two hypotheses. Overall, we find that body size constrains song frequency and pace in honeyeaters. Although habitat type and environmental temperature influence aspects of song, that influence is indirect, likely via effects of environmental variation on body size, with some evidence that elevation constrains the evolution of song peak frequency. Our results demonstrate that morphology has an overwhelming influence on birdsong, in support of the morphological constraint hypothesis, with the environment playing a secondary role generally via body size rather than habitat structure. These results suggest that changing body size (a consequence of both global effects such as climate change and local effects such as habitat transformation) will substantially influence the nature of birdsong.


Assuntos
Tamanho Corporal , Vocalização Animal , Animais , Aves Canoras/fisiologia , Aves Canoras/anatomia & histologia , Ecossistema , Evolução Biológica
2.
J Evol Biol ; 33(12): 1758-1769, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047407

RESUMO

Parasitism is often invoked as a factor explaining the variation in diversification rates across the tree of life, while also representing up to half of Earth's diversity. Yet, patterns and processes of parasite diversification remain mostly unknown. In this study, we assess the patterns of parasite diversification and specifically determine the role of life-history traits (i.e. life cycle complexity and host range) and major coevolutionary events in driving diversification across eight phylogenetic datasets spanning taxonomically different parasite groups. Aware of the degree of incomplete sampling among all parasite phylogenies, we also tested the impact of sampling bias on estimates of diversification. We show that the patterns and rates of parasite diversification differ among taxa according to life cycle complexity and to some extent major host transitions. Only directly transmitted parasites were found to be influenced by an effect of major host transitions on diversification rates. Although parasitism may be a main factor responsible for heterogeneity in diversification among the tree of life, the high degree of incomplete parasite phylogenies remains an obstacle when modelling diversification dynamics. Nevertheless, we provide the first comparative test of parasite diversification, revealing some consistent patterns and insight into the processes that shape it.


Assuntos
Evolução Biológica , Parasitos/genética , Animais , Especificidade de Hospedeiro
3.
BMC Ecol Evol ; 22(1): 86, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768772

RESUMO

BACKGROUND: Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS: We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS: Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.


Assuntos
Besouros , Passeriformes , Animais , Teorema de Bayes , Tamanho Corporal , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa