Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Vet Res ; 19(1): 219, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864222

RESUMO

BACKGROUND: This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS: From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION: Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.


Assuntos
Microbiota , Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Suínos , Animais , Masculino , Sêmen , Infecções por Pestivirus/veterinária , Viroma , Suécia/epidemiologia , Filogenia , Pestivirus/genética , RNA Viral/genética , Inseminação Artificial/veterinária
2.
BMC Vet Res ; 18(1): 348, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36109741

RESUMO

BACKGROUND: Atypical porcine pestivirus (APPV) is a neurotropic virus associated with congenital tremor type A-II. A few experimental studies also indicate an association between APPV and splay leg. The overarching aim of the present study was to provide insights into the virome, local cytokine response, and histology of the CNS in piglets with signs of congenital tremor or splay leg. RESULTS: Characterization of the cytokine profile and virome of the brain in piglets with signs of congenital tremor revealed an APPV-associated upregulation of Stimulator of interferon genes (STING). The upregulation of STING was associated with an increased expression of the gene encoding IFN-α but no differential expression was recorded for the genes encoding CXCL8, IFN-ß, IFN-γ, IL-1ß, IL-6, or IL-10. No viral agents or cytokine upregulation could be detected in the spinal cord of piglets with signs of splay leg or in the brain of piglets without an APPV-infection. The histopathological examination showed no lesions in the CNS that could be attributed to the APPV-infection, as no difference between sick and healthy piglets could be seen. CONCLUSION: The results from this study provide evidence of an APPV-induced antiviral cytokine response but found no lesions related to the infection nor any support for a common causative agent.


Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Antivirais , Citocinas/genética , Interferons , Interleucina-10 , Interleucina-6 , Infecções por Pestivirus/veterinária , Suínos , Tremor/congênito , Tremor/veterinária , Viroma
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055061

RESUMO

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes' ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


Assuntos
Aedes/genética , Aedes/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Transcriptoma , Animais , Coinfecção , Biologia Computacional/métodos , Flavivirus , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental
4.
Bioinformatics ; 35(3): 521-522, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016412

RESUMO

Motivation: The accurate in silico simulation of metagenomic datasets is of great importance for benchmarking bioinformatics tools as well as for experimental design. Users are dependant on large-scale simulation to not only design experiments and new projects but also for accurate estimation of computational needs within a project. Unfortunately, most current read simulators are either not suited for metagenomics, out of date or relatively poorly documented. In this article, we describe InSilicoSeq, a software package to simulate metagenomic Illumina sequencing data. InsilicoSeq has a simple command-line interface and extensive documentation. Results: InSilicoSeq is implemented in Python and capable of simulating realistic Illumina (meta) genomic data in a parallel fashion with sensible default parameters. Availability and implementation: Source code and documentation are available under the MIT license at https://github.com/HadrienG/InSilicoSeq and https://insilicoseq.readthedocs.io/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Metagenômica , Software , Biologia Computacional
5.
Virol J ; 15(1): 71, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669586

RESUMO

BACKGROUND: Mosquitoes are the potential vectors for a variety of viruses that can cause diseases in the human and animal populations. Viruses in the order Picornavirales infect a broad range of hosts, including mosquitoes. In this study, we aimed to characterize a novel picorna-like virus from the Culex spp. of mosquitoes from the Zambezi Valley of Mozambique. METHODS: The extracted RNA from mosquito pools was pre-amplified with the sequence independent single primer amplification (SISPA) method and subjected to high-throughput sequencing using the Ion Torrent platform. Reads that are classified as Iflaviridae, Picornaviridae and Dicistroviridae were assembled by CodonCode Aligner and SPAdes. Gaps between the viral contigs were sequenced by PCR. The genomic ends were analyzed by 5' and 3' RACE PCRs. The ORF was predicted with the NCBI ORF finder. The conserved domains were identified with ClustalW multiple sequence alignment, and a phylogenetic tree was built with MEGA. The presence of the virus in individual mosquito pools was detected by RT-PCR assay. RESULTS: A near full-length viral genome (9740 nt) was obtained in Culex mosquitoes that encoded a complete ORF (3112 aa), named Culex picorna-like virus (CuPV-1). The predicted ORF had 38% similarity to the Hubei picorna-like virus 35. The sequence of the conserved domains, Helicase-Protease-RNA-dependent RNA polymerase, were identified by multiple sequence alignment and found to be at the 3' end, similar to iflaviruses. Phylogenetic analysis of the putative RdRP amino acid sequences indicated that the virus clustered with members of the Iflaviridae family. CuPV-1 was detected in both Culex and Mansonia individual pools with low infection rates. CONCLUSIONS: The study reported a highly divergent, near full-length picorna-like virus genome from Culex spp. mosquitoes from Mozambique. The discovery and characterization of novel viruses in mosquitoes is an initial step, which will provide insights into mosquito-virus interaction mechanisms, genetic diversity and evolution.


Assuntos
Culex/virologia , Filogenia , Picornaviridae/classificação , Picornaviridae/genética , Sequência de Aminoácidos , Animais , Genoma Viral , Vírus de Insetos/classificação , Vírus de Insetos/genética , Metagenômica , Moçambique , Fases de Leitura Aberta , RNA Viral/genética , Alinhamento de Sequência , Proteínas Virais
6.
J Virol ; 88(1): 574-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173223

RESUMO

Last-generation nucleoside/nucleotide analogues are potent against hepatitis B virus (HBV) and have a high barrier to resistance. However, delayed responses have been observed in patients previously exposed to other drugs of the same class, long-term resistance is possible, and cure of infection cannot be achieved with these therapies, emphasizing the need for alternative therapeutic approaches. The HBV RNase H represents an interesting target because its enzyme activity is essential to the HBV life cycle. The goal of our study was to characterize the structure of the HBV RNase H by computing a 3-dimensional molecular model derived from E. coli RNase H and analyzing 2,326 sequences of all HBV genotypes available in public databases and 958,000 sequences generated by means of ultradeep pyrosequencing of sequences from a homogenous population of 73 treatment-naive patients infected with HBV genotype D. Our data revealed that (i) the putative 4th catalytic residue displays unexpected variability that could be explained by the overlap of the HBx gene and has no apparent impact on HBV replicative capacity and that (ii) the C-helix-containing basic protrusion, which is required to guide the RNA/DNA heteroduplex into the catalytic site, is highly conserved and bears unique structural properties that can be used to target HBV-specific RNase H inhibitors without cross-species activity. The model shows substantial differences from other known RNases H and paves the way for functional and structural studies as a prerequisite to the development of new inhibitors of the HBV cell cycle specifically targeting RNase H activity.


Assuntos
Vírus da Hepatite B/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Ribonuclease H/genética , Sequência de Aminoácidos , Antivirais/farmacologia , Genótipo , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Modelos Moleculares , Dados de Sequência Molecular , Ribonuclease H/química , Homologia de Sequência de Aminoácidos
7.
Nucleic Acids Res ; 41(Database issue): D566-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125365

RESUMO

We have developed a specialized database, HBVdb (http://hbvdb.ibcp.fr), allowing the researchers to investigate the genetic variability of Hepatitis B Virus (HBV) and viral resistance to treatment. HBV is a major health problem worldwide with more than 350 million individuals being chronically infected. HBV is an enveloped DNA virus that replicates by reverse transcription of an RNA intermediate. HBV genome is optimized, being circular and encoding four overlapping reading frames. Indeed, each nucleotide of the genome takes part in the coding of at least one protein. However, HBV shows some genome variability leading to at least eight different genotypes and recombinant forms. The main drugs used to treat infected patients are nucleos(t)ides analogs (reverse transcriptase inhibitors). Unfortunately, HBV mutants resistant to these drugs may be selected and be responsible for treatment failure. HBVdb contains a collection of computer-annotated sequences based on manually annotated reference genomes. The database can be accessed through a web interface that allows static and dynamic queries and offers integrated generic sequence analysis tools and specialized analysis tools (e.g. annotation, genotyping, drug resistance profiling).


Assuntos
Bases de Dados Genéticas , Vírus da Hepatite B/genética , Farmacorresistência Viral/genética , Variação Genética , Genoma Viral , Técnicas de Genotipagem , Vírus da Hepatite B/efeitos dos fármacos , Internet , Anotação de Sequência Molecular , Interface Usuário-Computador , Proteínas Virais/genética
8.
J Glob Antimicrob Resist ; 37: 44-47, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408562

RESUMO

OBJECTIVES: Burkholderia dolosa is a clinically important opportunistic pathogen in inpatients. Here we characterised an extensively drug-resistant and hypervirulent B. dolosa isolate from a patient hospitalised for stroke. METHODS: Resistance to 41 antibiotics was tested with the agar disc diffusion, minimum inhibitory concentration, or broth microdilution method. The complete genome was assembled using short-reads and long-reads and the hybrid de novo assembly method. Allelic profiles obtained by multilocus sequence typing were analysed using the PubMLST database. Antibiotic-resistance and virulence genes were predicted in silico using public databases and the 'baargin' workflow. B. dolosa N149 phylogenetic relationships with all available B. dolosa strains and Burkholderia cepacia complex strains were analysed using the pangenome obtained with Roary. RESULTS: B. dolosa N149 displayed extensive resistance to 31 antibiotics and intermediate resistance to 4 antibiotics. The complete genome included three circular chromosomes (6 338 630 bp in total) and one plasmid (167 591 bp). Genotypic analysis revealed various gene clusters (acr, amr, amp, emr, ade, bla and tet) associated with resistance to 35 antibiotic classes. The major intrinsic resistance mechanisms were multidrug efflux pump alterations, inactivation and reduced permeability of targeted antibiotics. Moreover, 91 virulence genes (encoding proteins involved in adherence, formation of capsule, biofilm and colony, motility, phagocytosis inhibition, secretion systems, protease secretion, transmission and quorum sensing) were identified. B. dolosa N149 was assigned to a novel sequence type (ST2237) and formed a mono-phylogenetic clade separated from other B. dolosa strains. CONCLUSIONS: This study provided insights into the antimicrobial resistance and virulence mechanisms of B. dolosa.


Assuntos
Antibacterianos , Infecções por Burkholderia , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Acidente Vascular Cerebral , Humanos , Antibacterianos/farmacologia , Vietnã , Infecções por Burkholderia/microbiologia , Acidente Vascular Cerebral/microbiologia , Burkholderia/genética , Burkholderia/efeitos dos fármacos , Burkholderia/isolamento & purificação , Burkholderia/classificação , Burkholderia/patogenicidade , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , População do Sudeste Asiático
9.
Sci Rep ; 14(1): 7241, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538725

RESUMO

Four isolates of the opportunistic pathogen Elizabethkingia anophelis were identified for the first time in a Vietnamese hospital and underwent antimicrobial susceptibility testing and genomic characterization by whole-genome sequencing. Complete, fully circularized genome sequences were obtained for all four isolates. Average Nucleotide Identity analysis and single nucleotide polymorphism phylogenetic analysis on the core genome showed that three of the four isolates were genetically distinct, ruling out the hypothesis of a single strain emergence. Antibiotic susceptibility testing highlighted multi-resistant phenotypes against most antimicrobial families, including beta-lactams, carbapenems, aminoglycosides, quinolones, macrolides, amphenicols, rifamycins and glycopeptides. Additionally, in silico genomic analysis was used to correlate the phenotypic susceptibility to putative resistance determinants, including resistance genes, point mutations and multidrug efflux pumps. Nine different resistance genes were located inside a single resistance pocket predicted to be a putative Integrative and Conjugative Element (ICE). This novel ICE was shared by three isolates from two different lineages and displayed similarity with ICEs previously reported in various Elizabethkingia and Chryseobacterium species. The role of such ICEs in pathogenicity, genome plasticity and antimicrobial resistance gene spread within the Flavobacteriaceae family needs to be further elucidated.


Assuntos
Flavobacteriaceae , Genoma Bacteriano , Vietnã , Filogenia , Antibacterianos/farmacologia
10.
Gastroenterology ; 143(1): 223-233.e9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22503792

RESUMO

BACKGROUND & AIMS: The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS: We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS: By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS: We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/genética , Hepatite C/genética , Internalização do Vírus , Linhagem Celular Tumoral , Hepacivirus/imunologia , Hepatite C/imunologia , Humanos , Masculino , Mutação , Transplantes/virologia
11.
J Glob Antimicrob Resist ; 34: 247-252, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463613

RESUMO

OBJECTIVES: Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) are a main cause of human deaths associated with antimicrobial resistance (AMR). Despite hundreds of reports of the faecal carriage of ESBL-E. coli in domestic and wild animals, the dynamics of its circulation remains poorly understood. METHODS: We used whole genome sequencing of 19 ESBL-E. coli previously isolated in the same local setting from dogs, livestock, and a wild rodent in Central Chile to assess potential cross-species transmission of ESBL-E. coli. RESULTS: Isolates harboured a large number of AMR (n = 95) and virulence (n = 45) genes, plasmids replicons (n = 24), and E. coli sequence types including top extraintestinal pathogenic E. coli ST410, ST58, ST88, and ST617. Almost identical clones (<50 single nucleotide polymorphisms difference, same antibiotic and heavy metal resistance genes, virulence genes, and plasmids) were found in faeces of dogs, cattle, or sheep from the same farm, and in a dog and a wild rodent living in proximity. CONCLUSIONS: To our knowledge, this is the first report of multiple clonal cross-species transmission of ESBL-E. coli in domestic and potentially wild animals of Latin America. Our results suggest that relatively rare spread of AMR across animal species can still occur by both clonal and plasmid dissemination. Our study highlights the need for establishing preventive measures to limit the circulation of these bacteria among animals in agricultural settings, particularly given the highly pathogenic profile of several E. coli strains detected in these animals.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Animais , Cães , Bovinos , Ovinos , Escherichia coli/genética , Animais Selvagens , Gado/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Chile/epidemiologia , beta-Lactamases/genética
12.
Front Microbiol ; 14: 1094119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323902

RESUMO

Introduction: In the past decades, extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Escherichia coli isolates have been detected in Vietnamese hospitals. The transfer of antimicrobial resistance (AMR) genes carried on plasmids is mainly responsible for the emergence of multidrug-resistant E. coli strains and the spread of AMR genes through horizontal gene transfer. Therefore, it is important to thoroughly study the characteristics of AMR gene-harboring plasmids in clinical multidrug-resistant bacterial isolates. Methods: The profiles of plasmid assemblies were determined by analyzing previously published whole-genome sequencing data of 751 multidrug-resistant E. coli isolates from Vietnamese hospitals in order to identify the risk of AMR gene horizontal transfer and dissemination. Results: The number of putative plasmids in isolates was independent of the sequencing coverage. These putative plasmids originated from various bacterial species, but mostly from the Escherichia genus, particularly E. coli species. Many different AMR genes were detected in plasmid contigs of the studied isolates, and their number was higher in CR isolates than in ESBL-producing isolates. Similarly, the blaKPC-2, blaNDM-5, blaOXA-1, blaOXA-48, and blaOXA-181 ß-lactamase genes, associated with resistance to carbapenems, were more frequent in CR strains. Sequence similarity network and genome annotation analyses revealed high conservation of the ß-lactamase gene clusters in plasmid contigs that carried the same AMR genes. Discussion: Our study provides evidence of horizontal gene transfer in multidrug-resistant E. coli isolates via conjugative plasmids, thus rapidly accelerating the emergence of resistant bacteria. Besides reducing antibiotic misuse, prevention of plasmid transmission also is essential to limit antibiotic resistance.

13.
Sci Total Environ ; 905: 167160, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730061

RESUMO

The emergence of carbapenem resistance is a major public health threat in sub-Saharan Africa but remains poorly understood, particularly at the human-animal-environment interface. This study provides the first One Health-based study on the epidemiology of Carbapenemase-Producing Gram-Negative Bacteria (CP-GNB) in Djibouti City, Djibouti, East Africa. In total, 800 community urine samples and 500 hospital specimens from humans, 270 livestock fecal samples, 60 fish samples, and 20 water samples were collected and tested for carbapenem resistance. The overall estimated CP-GNB prevalence was 1.9 % (32/1650 samples) and specifically concerned 0.3 % of community urine samples, 2.8 % of clinical specimens, 2.6 % of livestock fecal samples, 11.7 % of fish samples, and 10 % of water samples. The 32 CP-GNB included 19 Escherichia coli, seven Acinetobacter baumannii, five Klebsiella pneumoniae, and one Proteus mirabilis isolate. Short-read (Illumina) and long-read (Nanopore) genome sequencing revealed that carbapenem resistance was mainly associated with chromosomal carriage of blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-66, and blaOXA-69 in A. baumannii, and with plasmid carriage in Enterobacterales (blaNDM-1 and blaOXA-181 in E. coli, blaNDM-1, blaNDM-5 and blaOXA-48 in K. pneumoniae, and blaNDM-1 in P. mirabilis). Moreover, 17/32 CP-GNB isolates belonged to three epidemic clones: (1) A. baumannii sequence type (ST) 1697,2535 that showed a distribution pattern consistent with intra- and inter-hospital dissemination; (2) E. coli ST10 that circulated at the human-animal-environment interface; and (3) K. pneumoniae ST147 that circulated at the human-environment interface. Horizontal exchanges probably contributed to carbapenem resistance dissemination in the city, especially the blaOXA-181-carrying ColKP3-IncX3 hybrid plasmid that was found in E. coli isolates belonging to different STs. Our study highlights that despite a relatively low CP-GNB prevalence in Djibouti City, plasmids harboring carbapenem resistance circulate in humans, animals and environment. Our findings stress the need to implement preventive and control measures for reducing the circulation of this potentially emerging public health threat.


Assuntos
Proteínas de Bactérias , Escherichia coli , Humanos , Animais , Escherichia coli/genética , Djibuti/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos , Klebsiella pneumoniae , Carbapenêmicos , Genômica , Água , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Virus Res ; 313: 198739, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271887

RESUMO

The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunyavirus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were highly divergent and tetantively named Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine Hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report 8 viral species belonging to 4 viral families including divergent ones in the blood of cattle in Uganda. Hence, cattle may be reservoir hosts for likely emergence of novel viruses with pathogenic potential to cause zoonotic diseases in different species with serious public health implications.


Assuntos
Doenças dos Bovinos , Coltivirus , Flaviviridae , Vírus de RNA , Reoviridae , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Humanos , Filogenia , Vírus de RNA/genética , Reoviridae/genética , Uganda/epidemiologia
15.
Viruses ; 13(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834988

RESUMO

RNA interference (RNAi)-mediated antiviral immunity is believed to be the primary defense against viral infection in mosquitoes. The production of virus-specific small RNA has been demonstrated in mosquitoes and mosquito-derived cell lines for viruses in all of the major arbovirus families. However, many if not all mosquitoes are infected with a group of viruses known as insect-specific viruses (ISVs), and little is known about the mosquito immune response to this group of viruses. Therefore, in this study, we sequenced small RNA from an Aedes albopictus-derived cell line infected with either Lammi virus (LamV) or Hanko virus (HakV). These viruses belong to two distinct phylogenetic groups of insect-specific flaviviruses (ISFVs). The results revealed that both viruses elicited a strong virus-derived small interfering RNA (vsiRNA) response that increased over time and that targeted the whole viral genome, with a few predominant hotspots observed. Furthermore, only the LamV-infected cells produced virus-derived Piwi-like RNAs (vpiRNAs); however, they were mainly derived from the antisense genome and did not show the typical ping-pong signatures. HakV, which is more distantly related to the dual-host flaviviruses than LamV, may lack certain unknown sequence elements or structures required for vpiRNA production. Our findings increase the understanding of mosquito innate immunity and ISFVs' effects on their host.


Assuntos
Aedes/virologia , Flaviviridae/genética , Flavivirus/genética , Vírus de Insetos/genética , Insetos/virologia , Animais , Linhagem Celular , Flaviviridae/classificação , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Insetos/classificação , Mosquitos Vetores/virologia , Filogenia , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Viral/genética , Análise de Sequência
16.
Virology ; 560: 116-123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058706

RESUMO

Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future.


Assuntos
Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Spheniscidae/virologia , Animais , Chile/epidemiologia , Espécies em Perigo de Extinção , Filogenia , Picornaviridae/genética
17.
Infect Genet Evol ; 82: 104290, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32205264

RESUMO

Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privately-owned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4-23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being detected in dogs living in geographically distant locations and sampled across 3 years (2013-2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV viruses, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Doenças do Cão/virologia , Animais , Infecções por Coronavirus/epidemiologia , Coronavirus Canino/isolamento & purificação , Doenças do Cão/epidemiologia , Cães , Variação Genética , Genoma Viral , Nasofaringe/virologia , Filogenia , Recombinação Genética , Suécia/epidemiologia
18.
Viruses ; 11(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694175

RESUMO

Metagenomic studies of mosquitoes have revealed that their virome is far more diverse and includes many more viruses than just the pathogenic arboviruses vectored by mosquitoes. In this study, the virome of 953 female mosquitoes collected in the summer of 2017, representing six mosquito species from two geographic locations in Mid-Eastern Sweden, were characterized. In addition, the near-complete genome of nine RNA viruses were characterized and phylogenetically analysed. These viruses showed association to the viral orders Bunyavirales, Picornavirales, Articulavirales, and Tymovirales, and to the realm Ribovira. Hence, through this study, we expand the knowledge of the virome composition of different mosquito species in Sweden. In addition, by providing viral reference genomes from wider geographic regions and different mosquito species, future in silico recognition and assembly of viral genomes in metagenomic datasets will be facilitated.


Assuntos
Culicidae/virologia , Genoma Viral/genética , Vírus de RNA/genética , Animais , Arbovírus/classificação , Arbovírus/genética , Arbovírus/isolamento & purificação , Culicidae/classificação , Feminino , Especificidade de Hospedeiro , Metagenômica , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Suécia
19.
Infect Ecol Epidemiol ; 8(1): 1478585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868166

RESUMO

Background: Ticks are primary vectors for many well-known disease-causing agents that affect human and animal populations globally such as tick-borne encephalitis, Crimean-Congo hemorrhagic fever and African swine fever. In this study, viral metagenomics was used to identify what viruses are present in Rhipicephalus spp. ticks collected in the Zambezi Valley of Mozambique. Methods: The RNA was amplified with sequence-independent single primer amplification (SISPA) and high-throughput sequencing was performed on the Ion Torrent platform. The generated sequences were subjected to quality check and classfied by BLAST. CodonCode aligner and SeqMan were used to assemble the sequences. Results: The majority of viral sequences showed closest sequence identity to the Orthomyxoviridae family, although viruses similar to the Parvoviridae and Coronaviridae were also identified. Nearly complete sequences of five orthomyxoviral segments (HA, NP, PB1, PB2, and PA) were obtained and these showed an amino acid identity of 32-52% to known quaranjaviruses. The sequences were most closely related to the Wellfleet Bay virus, detected and isolated from common eider during a mortality event in the USA. Conclusions: In summary, this study has identified a highly divergent virus with in the Orthomyxoviridae family associated with Rhipicephalus ticks from Mozambique. Further genetic and biological studies are needed in order to investigate potential pathogenesis of the identified orthomyxovirus.

20.
Infect Genet Evol ; 53: 47-55, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28506838

RESUMO

Adenoviruses are common pathogens in vertebrates, infecting a wide range of hosts, but only having rarely been detected and correlated with disease in cetaceans. This article describes the first complete genomic sequence of a cetacean adenovirus, bottlenose dolphin adenovirus 1 (BdAdV-1), detected in captive bottlenose dolphin population (Tursiops truncatus) suffering from self-limiting gastroenteritis. The complete genome sequence of BdAdV-1 was recovered from data generated by high-throughput sequencing and validated by Sanger sequencing. The genome is 34,080bp long and has 220 nucleotides long inverted terminal repeats. A total of 29 coding sequences were identified, 26 of which were functionally annotated. Among the unusual features of this genome is a remarkably long 4380bp E3 ORF1, that displays no sequence homology with the corresponding E3 regions of other adenoviruses. In addition, the fiber protein only has 26% identity with fiber proteins described in other adenoviruses. Three hypothetical proteins were predicted. The phylogenetic analysis indicates that the closest known relative to BdAdV-1 is an adenovirus detected in bottlenose dolphin (KR024710), with an amino acid sequence identity between 36 and 79% depending on the protein. Based on the phylogenic analysis, the BdAdV-1 appears to have co-evolved with its host. The results indicate that BdAdV-1 belongs to the Mastadenovirus genus of the Adenoviridae family, however, it is clearly different from other adenoviruses, especially in the 3'-end of the viral genome. The high degree of sequence divergence suggests that BdAdV-1 should be considered as a novel species in the Mastadenovirus genus. The study also demonstrates the usefulness of high-throughput sequencing to obtain full-length genomes of genetically divergent viruses.


Assuntos
Infecções por Adenoviridae/veterinária , Golfinho Nariz-de-Garrafa/virologia , Gastroenterite/veterinária , Genoma Viral , Mastadenovirus/genética , Filogenia , Proteínas Virais/genética , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Animais , Coevolução Biológica , DNA Viral/genética , Gastroenterite/epidemiologia , Gastroenterite/virologia , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Fases de Leitura Aberta , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa