Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Immunol Cell Biol ; 94(3): 306-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26391810

RESUMO

Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas/deficiência , Animais , Apresentação de Antígeno/imunologia , Imunofenotipagem , Vírus da Influenza A/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo
2.
Nature ; 461(7264): 659-63, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794494

RESUMO

Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.


Assuntos
Apoptose , Membrana Celular/metabolismo , Proteína Ligante Fas/metabolismo , Receptor fas/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Citidina Desaminase/metabolismo , Citotoxicidade Imunológica , Proteína Ligante Fas/deficiência , Proteína Ligante Fas/genética , Glomerulonefrite/metabolismo , Sarcoma Histiocítico/metabolismo , Hipergamaglobulinemia/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Doenças Linfáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Esplenomegalia/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Semin Immunol ; 22(3): 113-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20403709

RESUMO

An attractive, yet hitherto unproven concept predicts that the promotion of tumor regression should elicit the host's immune response against residual tumor cells to achieve an optimal therapeutic effect. In a way, chemo- or radiotherapy must trigger "danger signals" emitted from immunogenic cell death and hence elicit "danger associated molecular patterns" to stimulate powerful anticancer immune responses. Here, based on the recent experimental and clinical evidence, we will discuss the molecular identity of the multiple checkpoints that dictate the success of "immunogenic chemotherapy" at the levels of the drug, of the tumor cell and of the host immune system.


Assuntos
Tratamento Farmacológico , Imunoterapia/métodos , Neoplasias , Radioterapia , Vacinas Anticâncer/imunologia , Humanos , Sistema Imunitário , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Neoplasias/imunologia , Neoplasias/terapia
4.
Proc Natl Acad Sci U S A ; 108(10): 4141-6, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368108

RESUMO

Histone deacetylase inhibitors (HDACi) have been successfully used as monotherapies for the treatment of hematological malignancies; however, the single agent effects of HDACi against solid tumors are less robust. Using preclinical models of lymphoma, we have recently demonstrated that HDACi induce tumor cell-specific apoptosis and that this is essential for the therapeutic effects of these agents. Herein, we demonstrate that HDACi can be combined with immune-activating antibodies designed to promote the function of antigen-presenting cells (APCs) and enhance proliferation and survival of cytotoxic T cells (CTL) to stimulate a host antitumor immune response resulting in eradication of established solid tumors. This unique combination therapy was dependent on tumor cell apoptosis mediated by HDACi that stimulated the uptake of dead tumor cells by APCs. Tumor eradication was mediated by CD8(+) CTL that used perforin as the key immune effector molecule. This combination therapy was well tolerated and induced long-term immunological antitumor memory capable of mediating spontaneous tumor eradication upon rechallenge. These studies indicate that the ability of HDACi to mediate subtherapeutic levels of tumor cell apoptosis can be exploited by combining with antibodies that augment host antitumor immune responses to mediate robust and prolonged eradication of solid tumors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Experimentais/terapia , Animais , Células Apresentadoras de Antígenos/imunologia , Terapia Combinada , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Vorinostat
5.
J Immunol ; 187(3): 1166-75, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21709155

RESUMO

Granzymes A and B (GrAB) are known principally for their role in mediating perforin-dependent death of virus-infected or malignant cells targeted by CTL. In this study, we show that granzymes also play a critical role as inducers of Ag cross-presentation by dendritic cells (DC). This was demonstrated by the markedly reduced priming of naive CD8(+) T cells specific for the model Ag OVA both in vitro and in vivo in response to tumor cells killed in the absence of granzymes. Reduced cross-priming was due to impairment of phagocytosis of tumor cell corpses by CD8α(+) DC but not CD8α(-) DC, demonstrating the importance of granzymes in inducing the exposure of prophagocytic "eat-me" signals on the dying target cell. Our data reveal a critical and previously unsuspected role for granzymes A and B in dictating immunogenicity by influencing the mode of tumor cell death and indicate that granzymes contribute to the efficient generation of immune effector pathways in addition to their well-known role in apoptosis induction.


Assuntos
Antígenos de Neoplasias/metabolismo , Apresentação Cruzada/imunologia , Granzimas/fisiologia , Fagocitose/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Animais , Antígenos de Neoplasias/imunologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Galinhas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Granzimas/deficiência , Granzimas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/toxicidade , Fragmentos de Peptídeos/toxicidade , Linfócitos T Citotóxicos/enzimologia
6.
J Exp Med ; 203(12): 2683-90, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17101733

RESUMO

After induction in secondary lymphoid organs, a subset of antibody-secreting cells (ASCs) homes to the bone marrow (BM) and contributes to long-term antibody production. The factors determining secondary lymphoid organ residence versus BM tropism have been unclear. Here we demonstrate that in mice treated with FTY720 or that lack sphingosine-1-phosphate (S1P) receptor-1 (S1P1) in B cells, IgG ASCs are induced and localize normally in secondary lymphoid organs but they are reduced in numbers in blood and BM. Many IgG ASCs home to BM on day 3 of the secondary response and day 3 splenic ASCs exhibit S1P responsiveness, whereas the cells remaining at day 5 are unable to respond. S1P1 mRNA abundance is higher in ASCs isolated from blood compared to spleen, whereas CXCR4 expression is lower. Blood ASCs also express higher amounts of Kruppel-like factor (KLF)2, a regulator of S1P1 gene expression. These findings establish an essential role for S1P1 in IgG plasma cell homing and they suggest that differential regulation of S1P1 expression in differentiating plasma cells may determine whether they remain in secondary lymphoid organs or home to BM.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular/imunologia , Tecido Linfoide/metabolismo , Lisofosfolipídeos/biossíntese , Plasmócitos/metabolismo , Receptores de Lisoesfingolipídeo/biossíntese , Esfingosina/análogos & derivados , Animais , Células Produtoras de Anticorpos/citologia , Células Produtoras de Anticorpos/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Movimento Celular/genética , Imunoglobulina G/biossíntese , Tecido Linfoide/citologia , Lisofosfolipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/citologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/biossíntese , Esfingosina/fisiologia
7.
J Immunol ; 185(1): 532-41, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20505139

RESUMO

The selective targeting of the tumor-associated death-inducing receptors DR4 and DR5 with agonistic mAbs has demonstrated preclinical and clinical antitumor activity. However, the cellular and molecular mechanisms contributing to this efficacy remain poorly understood. In this study, using the first described C57BL/6 (B6) TRAIL-sensitive experimental tumor models, we have characterized the innate and adaptive immune components involved in the primary rejection phase of an anti-mouse DR5 (mDR5) mAb, MD5-1 in established MC38 colon adenocarcinomas. FcR mediated cross-linking of MD5-1 significantly inhibited the growth of MC38 colon adenocarcinomas through the induction of TRAIL-R-dependent tumor cell apoptosis. The loss of host DR5, TRAIL, perforin, FasL, or TNF did not compromise anti-DR5 therapy in vivo. By contrast, anti-DR5 therapy was completely abrogated in mice deficient of B cells or CD11c(+) dendritic cells (DCs), providing the first direct evidence that these cells play a critical role. Importantly, the requirement for an intact B cell compartment for optimal anti-DR5 antitumor efficacy was also observed in established AT-3 mammary tumors. Interestingly, MD5-1-mediated apoptosis as measured by early TUNEL activity was completely lost in B cell-deficient microMT mice, but intact in mice deficient in CD11c(+) DCs. Overall, these data show that Ab-mediated targeting of DR5 triggers tumor cell apoptosis in established tumors in a B cell-dependent manner and that CD11c(+) DCs make a critical downstream contribution to anti-DR5 antitumor activity.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Antígeno CD11c/fisiologia , Células Dendríticas/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Anticorpos Monoclonais/toxicidade , Subpopulações de Linfócitos B/metabolismo , Antígeno CD11c/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Mastocitoma/imunologia , Mastocitoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/deficiência , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética
8.
J Med Imaging Radiat Oncol ; 66(4): 508-518, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35352493

RESUMO

Although the impressive clinical responses seen with modern cancer immunotherapy are currently limited to a subset of patients, the underlying paradigm shift has resulted in now hardly a segment in oncology that has not been touched by the immuno-oncology revolution. A growing body of data indicates that radiation therapy (RT) can modulate the tumour immune microenvironment and complement cancer immunotherapy via non-overlapping mechanisms to reinvigorate immunity against cancer. Thus, increasingly RT is viewed as a highly unique partner for immunotherapy across the spectrum of cancer settings, as radiobiology and cancer immunology foreseeably become more intertwined. Considering these developments, this review summarises the key concepts and terminology in immunology for the radiation oncologist, with a focus on the cancer setting and with reference to important recent advances. These concepts will provide a starting point for understanding the strategies that underlie current and emerging immunotherapy trials, as well as the indirect effects of RT by which immune responses against cancer are shaped.


Assuntos
Neoplasias , Radio-Oncologistas , Humanos , Imunoterapia/efeitos adversos , Oncologia , Neoplasias/radioterapia , Microambiente Tumoral
9.
Sci Rep ; 12(1): 18986, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347875

RESUMO

Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17ß estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.


Assuntos
Estrogênios , Receptores de Estrogênio , Camundongos , Animais , Fulvestranto , Estrogênios/farmacologia , Estradiol/farmacologia , Células Epiteliais , Glândulas Mamárias Animais/patologia
10.
Curr Opin Immunol ; 20(5): 545-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18573339

RESUMO

Tumors can acquire mutations or hijack regulatory pathways of the host immune system to render them resistant to immune attack. Standard first line therapies such as chemotherapy and radiation were not thought to provoke natural immunity to cancer, but recent findings demonstrating that dying tumor cells present and release key signals to stimulate or evade neighboring leukocytes are challenging that view. Killing tumor cells in a manner that provides danger signals and tumor antigens in the right context promotes the engagement of innate and adaptive immunity; however, this response alone will not be effective against established cancer. Coincidently driving the immune response with specific monoclonal antibodies and other immunomodulators that activate and mature dendritic cells and co-stimulate T cells and other lymphocytes is one approach. Additionally releasing immune checkpoints and inhibiting tumor-derived molecules that prevent effective tumor immunity is another. Combined these approaches have enormous potential to improve the current outcomes from conventional cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/imunologia , Células Dendríticas/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Terapia Combinada , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Receptores de Reconhecimento de Padrão/imunologia , Linfócitos T Citotóxicos/metabolismo
11.
Proc Natl Acad Sci U S A ; 105(31): 10895-900, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18667695

RESUMO

Chronic cholestasis often results in premature death from liver failure with fibrosis; however, the molecular mechanisms contributing to biliary cirrhosis are not demonstrated. In this article, we show that the death signal mediated by TNF-related apoptosis-inducing ligand (TRAIL) receptor 2/death receptor 5 (DR5) may be a key regulator of cholestatic liver injury. Agonistic anti-DR5 monoclonal antibody treatment triggered cholangiocyte apoptosis, and subsequently induced cholangitis and cholestatic liver injury in a mouse strain-specific manner. TRAIL- or DR5-deficient mice were relatively resistant to common bile duct ligation-induced cholestasis, and common bile duct ligation augmented DR5 expression on cholangiocytes, sensitizing mice to DR5-mediated cholangitis. Notably, anti-DR5 monoclonal antibody-induced cholangitis exhibited the typical histological appearance, reminiscent of human primary sclerosing cholangitis. Human cholangiocytes constitutively expressed DR5, and TRAIL expression and apoptosis were significantly elevated in cholangiocytes of human primary sclerosing cholangitis and primary biliary cirrhosis patients. Thus, TRAIL/DR5-mediated apoptosis may substantially contribute to chronic cholestatic disease, particularly primary sclerosing cholangitis.


Assuntos
Apoptose/imunologia , Colangite/metabolismo , Colestase/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Anticorpos Monoclonais , Linhagem Celular Tumoral , Colangite/patologia , Colestase/metabolismo , Colestase/patologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética
12.
Proc Natl Acad Sci U S A ; 105(32): 11317-22, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18685088

RESUMO

Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to induce tumor cell-selective apoptosis. The ability of HDACi to induce expression of TRAIL-R death receptors 4 and 5 (DR4/DR5), and induce tumor cell death via the intrinsic apoptotic pathway provides a molecular rationale to combine these agents with activators of the TRAIL pathway that activate the alternative (death receptor) apoptotic pathway. Herein, we demonstrate that the HDACi vorinostat synergizes with the mouse DR5-specific monoclonal antibody MD5-1 to induce rapid and robust tumor cell apoptosis in vitro and in vivo. Importantly, using a preclinical mouse breast cancer model, we show that the combination of vorinostat and MD5-1 is safe and induces regression of established tumors, whereas single agent treatment had little or no effect. Functional analyses revealed that rather than mediating enhanced tumor cell apoptosis via the simultaneous activation of the intrinsic and extrinsic apoptotic pathways, vorinostat augmented MD5-1-induced apoptosis concomitant with down-regulation of the intracellular apoptosis inhibitor cellular-FLIP (c-FLIP). These data demonstrate that combination therapies involving HDACi and activators of the TRAIL pathway can be efficacious for the treatment of cancer in experimental mouse models.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases , Neoplasias Mamárias Experimentais/tratamento farmacológico , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Animais , Anticorpos Monoclonais/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Vorinostat
13.
Front Immunol ; 12: 813832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095911

RESUMO

Radiotherapy (RT) is the standard-of-care treatment for more than half of cancer patients with localized tumors and is also used as palliative care to facilitate symptom relief in metastatic cancers. In addition, RT can alter the immunosuppressive tumor microenvironment (TME) of solid tumors to augment the anti-tumor immune response of immune checkpoint blockade (ICB). The rationale of this combination therapy can also be extended to other forms of immunotherapy, such as chimeric antigen receptor T cell (CAR-T) therapy. Similar to ICB, the efficacy of CAR-T therapy is also significantly impacted by the immunosuppressive TME, leading to compromised T cell function and/or insufficient T cell infiltration. In this review, we will discuss some of the key barriers to the activity of CAR-T cells in the immunosuppressive TME and focus on how RT can be used to eliminate or bypass these barriers. We will present the challenges to achieving success with this therapeutic partnership. Looking forward, we will also provide strategies currently being investigated to ensure the success of this combination strategy in the clinic.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Radioterapia , Terapia Combinada , Gerenciamento Clínico , Humanos , Terapia de Imunossupressão/métodos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/diagnóstico , Neoplasias/etiologia , Neoplasias/mortalidade , Prognóstico , Radioterapia/efeitos adversos , Radioterapia/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
14.
Int J Radiat Oncol Biol Phys ; 111(2): 502-514, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023423

RESUMO

PURPOSE: We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS: AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS: In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS: Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias Experimentais/radioterapia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa/efeitos da radiação , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunidade Inata/efeitos da radiação , Imunomodulação , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia
15.
Cancer Immunol Res ; 9(2): 136-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303574

RESUMO

Combined inhibition of BRAF, MEK, and CDK4/6 is currently under evaluation in clinical trials for patients with melanoma harboring a BRAFV600 mutation. While this triple therapy has potent tumor-intrinsic effects, the impact of this combination on antitumor immunity remains unexplored. Here, using a syngeneic BrafV600ECdkn2a-/-Pten-/- melanoma model, we demonstrated that triple therapy promoted durable tumor control through tumor-intrinsic mechanisms and promoted immunogenic cell death and T-cell infiltration. Despite this, tumors treated with triple therapy were unresponsive to immune checkpoint blockade (ICB). Flow cytometric and single-cell RNA sequencing analyses of tumor-infiltrating immune populations revealed that triple therapy markedly depleted proinflammatory macrophages and cross-priming CD103+ dendritic cells, the absence of which correlated with poor overall survival and clinical responses to ICB in patients with melanoma. Indeed, immune populations isolated from tumors of mice treated with triple therapy failed to stimulate T-cell responses ex vivo While combined BRAF, MEK, and CDK4/6 inhibition demonstrates favorable tumor-intrinsic activity, these data suggest that collateral effects on tumor-infiltrating myeloid populations may impact antitumor immunity. These findings have important implications for the design of combination strategies and clinical trials that incorporate BRAF, MEK, and CDK4/6 inhibition with immunotherapy for the treatment of patients with melanoma.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Quinase 4 Dependente de Ciclina/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Death Dis ; 12(11): 959, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663790

RESUMO

Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.


Assuntos
Neoplasias do Ânus/genética , Neoplasias do Ânus/patologia , Genômica , Animais , Neoplasias do Ânus/terapia , Neoplasias do Ânus/ultraestrutura , Antígeno B7-H1/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Dosagem de Genes , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Mutação/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Discov ; 11(10): 2582-2601, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33990344

RESUMO

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, whereas their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic, and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunologic T-cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous antitumor T-cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor T cells, and induced a retinoblastoma-dependent T-cell phenotype supportive of favorable responses to immune checkpoint blockade in patients with melanoma. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost antitumor T-cell immunity. SIGNIFICANCE: Immunologic memory is critical for sustained antitumor immunity. Our discovery that CDK4/6 inhibitors drive T-cell memory fate commitment sheds new light on their clinical activity, which is essential for the design of clinical trial protocols incorporating these agents, particularly in combination with immunotherapy, for the treatment of cancer.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Células T de Memória/efeitos dos fármacos , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Immunol Immunother ; 59(8): 1235-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20376439

RESUMO

Natural killer (NK) cells represent a promising cell type to utilize for effective adoptive immunotherapy. However, little is known about the important cytolytic molecules and signaling pathways used by NK cells in the adoptive transfer setting. To address this issue, we developed a novel mouse model to investigate the trafficking and mechanism of action of these cells. We demonstrate that methylcholanthrene-induced RKIK sarcoma cells were susceptible to NK cell-mediated lysis in vitro and in vivo following adoptive transfer of NK cells in C57BL/6 RAG-2(-/-)gammac(-/-) mice. Cytotoxic molecules perforin, granzymes B and M as well as the death ligand TRAIL and pro-inflammatory cytokine IFN-gamma were found to be important in the anti-tumor effect mediated by adoptively transferred NK cells. Importantly, we demonstrate that adoptively transferred NK cells could traffic to the tumor site and persisted in vivo which correlated with the anti-tumor effect observed. Overall, the results of this study have important implications for enhancing NK cell-based immunotherapies.


Assuntos
Citotoxicidade Imunológica , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Sarcoma Experimental/imunologia , Sarcoma Experimental/terapia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Metilcolantreno , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Sarcoma Experimental/patologia
19.
Int J Radiat Oncol Biol Phys ; 103(5): 1184-1193, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529375

RESUMO

PURPOSE: Nontargeted effects of ionizing radiation, by which unirradiated cells and tissues are also damaged, are a relatively new paradigm in radiobiology. We recently reported radiation-induced abscopal effects (RIAEs) in normal tissues; namely, DNA damage, apoptosis, and activation of the local and systemic immune responses in C57BL6/J mice after irradiation of a small region of the body. High-dose-rate, synchrotron-generated broad beam or multiplanar x-ray microbeam radiation therapy was used with various field sizes and doses. This study explores components of the immune system involved in the generation of these abscopal effects. METHODS AND MATERIALS: The following mice with various immune deficiencies were irradiated with the microbeam radiation therapy beam: (1) SCID/IL2γR-/- (NOD SCID gamma, NSG) mice, (2) wild-type C57BL6/J mice treated with an antibody-blocking macrophage colony-stimulating factor 1 receptor, which depletes and alters the function of macrophages, and (3) chemokine ligand 2/monocyte chemotactic protein 1 null mice. Complex DNA damage (ie, DNA double-strand breaks), oxidatively induced clustered DNA lesions, and apoptotic cells in tissues distant from the irradiation site were measured as RIAE endpoints and compared with those in wild-type C57BL6/J mice. RESULTS: Wild-type mice accumulated double-strand breaks, oxidatively induced clustered DNA lesions, and apoptosis, enforcing our RIAE model. However, these effects were completely or partially abrogated in mice with immune disruption, highlighting the pivotal role of the immune system in propagation of systemic genotoxic effects after localized irradiation. CONCLUSIONS: These results underline the importance of not only delineating the best strategies for tumor control but also mitigating systemic radiation toxicity.


Assuntos
Apoptose , Quebras de DNA de Cadeia Dupla , Sistema Imunitário/fisiologia , Lesões Experimentais por Radiação/imunologia , Animais , Efeito Espectador , Quimiocina CCL2/sangue , Quimiocina CCL2/genética , DNA/isolamento & purificação , Feminino , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estresse Oxidativo , Doses de Radiação , Lesões Experimentais por Radiação/etiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Síncrotrons , Fator de Crescimento Transformador beta1/sangue
20.
J Immunother Cancer ; 6(1): 54, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898788

RESUMO

BACKGROUND: Pixatimod (PG545) is a novel clinical-stage immunomodulatory agent capable of inhibiting the infiltration of tumor-associated macrophages (TAMs) yet also stimulate dendritic cells (DCs), leading to activation of natural killer (NK) cells. Preclinically, pixatimod inhibits heparanase (HPSE) which may be associated with its inhibitory effect on TAMs whereas its immunostimulatory activity on DCs is through the MyD88-dependent TLR9 pathway. Pixatimod recently completed a Phase Ia monotherapy trial in advanced cancer patients. METHODS: To characterize the safety of pixatimod administered by intravenous (IV) infusion, a one month toxicology study was conducted to support a Phase Ia monotherapy clinical trial. The relative exposure (AUC) of pixatimod across relevant species was determined and the influence of route of administration on the immunomodulatory activity was also evaluated. Finally, the potential utility of pixatimod in combination with PD-1 inhibition was also investigated using the syngeneic 4T1.2 breast cancer model. RESULTS: The nonclinical safety profile revealed that the main toxicities associated with pixatimod are elevated cholesterol, triglycerides, APTT, decreased platelets and other changes symptomatic of modulating the immune system such as pyrexia, changes in WBC subsets, inflammatory changes in liver, spleen and kidney. Though adverse events such as fever, elevated cholesterol and triglycerides were reported in the Phase Ia trial, none were considered dose limiting toxicities and the compound was well tolerated up to 100 mg via IV infusion. Exposure (AUC) up to 100 mg was considered proportional with some accumulation upon repeated dosing, a phenomenon also noted in the toxicology study. The immunomodulatory activity of pixatimod was independent of the route of administration and it enhanced the effectiveness of PD-1 inhibition in a poorly immunogenic tumor model. CONCLUSIONS: Pixatimod modulates innate immune cells but also enhances T cell infiltration in combination with anti-PD-1 therapy. The safety and PK profile of the compound supports its ongoing development in a Phase Ib study for advanced cancer/pancreatic adenocarcinoma with the checkpoint inhibitor nivolumab (Opdivo®). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02042781 . First posted: 23 January, 2014 - Retrospectively registered.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Saponinas/uso terapêutico , Adenocarcinoma/patologia , Feminino , Humanos , Masculino , Neoplasias Pancreáticas/patologia , Saponinas/imunologia , Saponinas/farmacologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa