Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(4): 896-909.e20, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31030999

RESUMO

In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body.


Assuntos
Relógios Circadianos/fisiologia , Comportamento Alimentar/fisiologia , Proteínas Circadianas Period/metabolismo , Animais , Ritmo Circadiano/fisiologia , Feminino , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
2.
EMBO J ; 42(19): e114164, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37554073

RESUMO

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Assuntos
Eritrócitos , Hemoglobinas , Humanos , Camundongos , Animais , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Oxirredução , Heme/metabolismo , Ritmo Circadiano
3.
Proc Natl Acad Sci U S A ; 119(18): e2112781119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482925

RESUMO

Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired ß-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-day­dependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling.


Assuntos
Artrite , Relógios Circadianos , Ritmo Circadiano/fisiologia , Metabolismo Energético , Humanos , Inflamação/metabolismo
4.
BMC Biol ; 16(1): 83, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064443

RESUMO

BACKGROUND: Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. RESULTS: We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3-/-) or melanopsin (Opn1mwR; Opn4-/-). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. CONCLUSION: Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs-the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control.


Assuntos
Visão de Cores/fisiologia , Área Pré-Tectal/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Opsinas de Bastonetes/metabolismo , Animais , Masculino , Camundongos , Estimulação Luminosa
5.
Nat Commun ; 12(1): 2472, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931651

RESUMO

Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of-day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing. Our findings reveal a functional segregation of circadian control across the heart's conduction system and inherent susceptibility to arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Nó Atrioventricular/fisiologia , Ritmo Circadiano/fisiologia , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adulto , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Nó Atrioventricular/metabolismo , Sistema Nervoso Autônomo/fisiologia , Relógios Circadianos/fisiologia , Eletrocardiografia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/metabolismo , Sono/fisiologia
6.
Nat Commun ; 12(1): 6035, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654800

RESUMO

Between 6-20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl- through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.


Assuntos
Fenômenos Fisiológicos Celulares , Ritmo Circadiano/fisiologia , Transporte de Íons/fisiologia , Osmose , Animais , Sistema Cardiovascular/patologia , Células Cultivadas , Cloretos/metabolismo , Fibroblastos , Homeostase , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/metabolismo , Proteoma , Sódio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética
7.
Nat Commun ; 11(1): 1453, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193397

RESUMO

The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Neurônios GABAérgicos/metabolismo , Núcleo Supraquiasmático/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Relógios Circadianos/efeitos dos fármacos , Corticosterona/sangue , Corticosterona/metabolismo , Eletrodos Implantados , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Núcleo Supraquiasmático/citologia , Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa