Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210114

RESUMO

This paper proposes a new, robust time-delay cooperative adaptive cruise control (CACC) approach for vehicle platooning systems with uncertain dynamics and varying communication delay. The uncertain CACC models with perturbed parameters are used to describe the uncertain dynamics of the vehicle platooning system. By combining the constant time headway strategy and predecessor-following communication topology, a set of robust delay feedback controllers is designed for the uncertain vehicle platoon with varying communication delay. Then, the set of CACC controllers is computed by solving some linear matrix inequalities, which further establish the robust (string) stability of the uncertain platooning system with the varying communication delay. The co-simulation experiment of CarSim and Simulink with a group of a seven-car platoons and varying velocity is used to demonstrate the effectiveness of the presented method.

2.
Sensors (Basel) ; 20(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106573

RESUMO

This paper considers the state estimation problem of intelligent connected vehicle systems under the false data injection attack in wireless monitoring networks. We propose a new secure state estimation method to reconstruct the motion states of the connected vehicles equipped with cooperative adaptive cruise control (CACC) systems. First, the set of CACC models combined with Proportion-Differentiation (PD) controllers are used to represent the longitudinal dynamics of the intelligent connected vehicle systems. Then the notion of sparseness is employed to model the false data injection attack of the wireless networks of the monitoring platform. According to the corrupted data of the vehicles' states, the compressed sensing principle is used to describe the secure state estimation problem of the connected vehicles. Moreover, the L1 norm optimization problem is solved to reconstruct the motion states of the vehicles based on the orthogonaldecomposition. Finally, the simulation experiments verify that the proposed method can effectively reconstruct the motion states of vehicles for remote monitoring of the intelligent connected vehicle system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa