Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(35): 11051-11058, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39196295

RESUMO

A major challenge for ultrasensitive analysis is the high-efficiency determination of different target single molecules in parallel with high accuracy. Herein, we developed a quantitative fluoro-electrochemical imaging approach for direct multiplexed single-molecule counting with a SiC-nanofilm-modified indium tin oxide transparent electrode. The nanofilm could control local pH through proton-coupled electron transfer in a lower potential range and further induce direct electrochemical oxidation of the dye molecules with a higher applied potential. The fluoro-electrochemical responses of immobilized single molecules with different pH values and redox behaviors could thus be distinguished within the same fluorescence channels. This method yields nonamplified direct counting of single molecules, as indicated by excellent linear responses in the picomolar range. The successful distinction of seven different randomly mixed dyes underscores the versatility and efficacy of the proposed method in the highly accurate determination of single dye molecules, paving the way for highly parallel single-molecule detection for diverse applications.

2.
Anal Bioanal Chem ; 415(18): 3655-3669, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36609860

RESUMO

Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.


Assuntos
Peptídeos , Proteínas , Proteínas/análise , Nanotecnologia/métodos , DNA/química , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa