Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(15)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38942004

RESUMO

Reducing the radiation dose leads to the x-ray computed tomography (CT) images suffering from heavy noise and artifacts, which inevitably interferes with the subsequent clinic diagnostic and analysis. Leading works have explored diffusion models for low-dose CT imaging to avoid the structure degeneration and blurring effects of previous deep denoising models. However, most of them always begin their generative processes with Gaussian noise, which has little or no structure priors of the clean data distribution, thereby leading to long-time inference and unpleasant reconstruction quality. To alleviate these problems, this paper presents a Structure-Aware Diffusion model (SAD), an end-to-end self-guided learning framework for high-fidelity CT image reconstruction. First, SAD builds a nonlinear diffusion bridge between clean and degraded data distributions, which could directly learn the implicit physical degradation prior from observed measurements. Second, SAD integrates the prompt learning mechanism and implicit neural representation into the diffusion process, where rich and diverse structure representations extracted by degraded inputs are exploited as prompts, which provides global and local structure priors, to guide CT image reconstruction. Finally, we devise an efficient self-guided diffusion architecture using an iterative updated strategy, which further refines structural prompts during each generative step to drive finer image reconstruction. Extensive experiments on AAPM-Mayo and LoDoPaB-CT datasets demonstrate that our SAD could achieve superior performance in terms of noise removal, structure preservation, and blind-dose generalization, with few generative steps, even one step only.


Assuntos
Processamento de Imagem Assistida por Computador , Doses de Radiação , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Difusão , Humanos
2.
IEEE Trans Med Imaging ; PP2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146167

RESUMO

In recent years, score-based diffusion models have emerged as effective tools for estimating score functions from empirical data distributions, particularly in integrating implicit priors with inverse problems like CT reconstruction. However, score-based diffusion models are rarely explored in challenging tasks such as metal artifact reduction (MAR). In this paper, we introduce the BiConstraints Diffusion Model for Metal Artifact Reduction (BCDMAR), an innovative approach that enhances iterative reconstruction with a conditional diffusion model for MAR. This method employs a metal artifact degradation operator in place of the traditional metal-excluded projection operator in the data-fidelity term, thereby preserving structure details around metal regions. However, scorebased diffusion models tend to be susceptible to grayscale shifts and unreliable structures, making it challenging to reach an optimal solution. To address this, we utilize a precorrected image as a prior constraint, guiding the generation of the score-based diffusion model. By iteratively applying the score-based diffusion model and the data-fidelity step in each sampling iteration, BCDMAR effectively maintains reliable tissue representation around metal regions and produces highly consistent structures in non-metal regions. Through extensive experiments focused on metal artifact reduction tasks, BCDMAR demonstrates superior performance over other state-of-the-art unsupervised and supervised methods, both quantitatively and in terms of visual results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa