RESUMO
Since smallpox was eradicated in 1980, the monkeypox virus (MPXV) has emerged as the most threatening orthopoxvirus in the world. In this study, we conducted a comprehensive analysis of the currently published complete genome sequences of the monkeypox virus. The core/variable regions were identified through core-pan analysis of MPXV. Besides single-nucleotide polymorphisms, our study also revealed that specific genes, multi-copy genes, repeat sequences, and recombination fragments are primarily distributed in the variable region. This result suggests that variable regions are not only more susceptible to single-base mutations, but also to events such as gene loss or gain, as well as recombination. Taken together, our results demonstrate the genomic characteristics of the core/variable regions of MPXV, and contribute to our understanding of the evolution of MPXV.
Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Genômica , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1ß, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.
Assuntos
Anticorpos Antibacterianos , Infecções por Haemophilus , Interferon gama , Interleucina-4 , Animais , Camundongos , Interleucina-4/metabolismo , Interleucina-4/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/microbiologia , Interferon gama/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina Quinase/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Imunidade Humoral , Camundongos Endogâmicos BALB C , Baço/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proliferação de Células , Feminino , Adjuvantes Imunológicos , Haemophilus parasuis/imunologia , Haemophilus parasuis/genética , Citocinas/metabolismo , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Linfócitos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genéticaRESUMO
Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 µM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.
Assuntos
Técnicas Biossensoriais , Quadruplex G , Nanotubos , Oxirredutases/química , Óxidos/química , Colorimetria/métodos , Compostos de Manganês/química , Estrôncio , DNA , Técnicas Biossensoriais/métodosRESUMO
BACKGROUND: Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS: Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS: In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.
Assuntos
Bactérias , Diferenciação Celular , Proliferação de Células , Microbioma Gastrointestinal , Homeostase , Mucosa Intestinal , Células-Tronco , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Masculino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Intestinos/microbiologia , Intestinos/citologia , Bebidas Alcoólicas/análise , Etanol , Colo/microbiologia , Colo/metabolismoRESUMO
Dermatophytosis is an intractable superficial fungal infection of keratinized structures, with approximately 20% incidence in humans. Alterations of keratinocytes in the pathogenesis of dermatophytosis at the transcriptome level remain unclear. To understand and characterize such responses, keratinocytes were infected with Trichophyton mentagrophytes. After infection with 1 × 105 conidia/mL T. mentagrophytes for 24 h, the adherence of fungal hyphae to keratinocytes and the damage caused to cell morphology and structure were observed by light microscopy and transmission electron microscopy, respectively. Levels of pro-inflammatory cytokines IL-1α, IL-1ß, TNFα, and IL-8 significantly increased after infection. RNA-seq and bioinformatic analyses revealed that 766 genes were significantly whereas 2207 genes were repressed in the T. mentagrophyte-infected cells. Some of the differentially expressed genes (DEGs) were related to inflammation, immune responses, wound healing, metabolism, and oxidative stress. GO and KEGG pathway enrichment analyses revealed that DEGs and pathways involved in inflammatory response, immune response, and pathogen-induced dysfunction were significantly enriched in the infected cells. Furthermore, gene set enrichment analysis revealed that higher expression gene sets were mainly involved in immune responses, whereas lower expression gene sets were related to cell component organization or biogenesis and transporter activity. Furthermore, protein-protein interaction network and function analyses revealed that JUN, TP53, FOS, MYC, and HSP90AA1 play a key role in immune responses. Overall, our study systematically uncovered the transcriptome-level response of keratinocytes to T. mentagrophyte and provided insights into dermatophytosis treatment.
Assuntos
Dermatomicoses , Tinha , Biologia Computacional , Dermatomicoses/microbiologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos , Tinha/genética , Tinha/microbiologia , Transcriptoma , Trichophyton/genéticaRESUMO
The ptsG (hpIIBCGlc) gene, belonging to the glucose-specific phosphotransferase system, encodes the bacterial glucose-specific enzyme IIBC. In this study, the effects of a deletion of the ptsG gene were investigated by metabolome and transcriptome analyses. At the transcriptional level, we identified 970 differentially expressed genes between ΔptsG and sc1401 (Padj<0.05) and 2072 co-expressed genes. Among these genes, those involved in methane metabolism, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, pyruvate metabolism, phosphotransferase system (PTS), biotin metabolism, Two-component system and Terpenoid backbone biosynthesis showed significant changes in the ΔptsG mutant strain. Metabolome analysis revealed that a total of 310 metabolites were identified, including 20 different metabolites (p < 0.05). Among them, 15 metabolites were upregulated and 5 were downregulated in ΔptsG mutant strain. Statistical analysis revealed there were 115 individual metabolites having correlation, of which 89 were positive and 26 negative. These metabolites include amino acids, phosphates, amines, esters, nucleotides, benzoic acid and adenosine, among which amino acids and phosphate metabolites dominate. However, not all of these changes were attributable to changes in mRNA levels and must also be caused by post-transcriptional regulatory processes. The knowledge gained from this lays the foundation for further study on the role of ptsG in the pathogenic process of Glaesserella parasuis (G.parasuis).
Assuntos
Glucose , Pasteurellaceae , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Adenosina/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Amino Açúcares/metabolismo , Benzoatos/metabolismo , Biotina/genética , Biotina/metabolismo , Glucose/metabolismo , Metaboloma , Metano , Nucleotídeos/metabolismo , Fosfatos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Piruvatos/metabolismo , RNA Mensageiro/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Terpenos , Transcriptoma , Pasteurellaceae/enzimologiaRESUMO
Scabies is a parasitic disease caused by the ectoparasite Sarcoptes scabiei, affecting different mammalian species, including rabbits, worldwide. In the present study, we cloned and expressed a novel inorganic pyrophosphatase, Ssc-PYP-1, from S. scabiei var. cuniculi. Immunofluorescence staining showed that native Ssc-PYP-1 was localized in the tegument around the mouthparts and the entire legs, as well as in the cuticle of the mites. Interestingly, obvious staining was also observed on the fecal pellets of mites and in the integument of the mites. Based on its good immunoreactivity, an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant Ssc-PYP-1 (rSsc-PYP-1) as the capture antigen was developed to diagnose sarcoptic mange in naturally infected rabbits; the assay had a sensitivity of 92·0% and specificity of 93·6%. Finally, using the rSsc-PYP-1-ELISA, the Ssc-PYP-1 antibody from 10 experimentally infected rabbits could be detected from 1 week post-infection. This is the first report of S. scabiei inorganic pyrophosphatase and the protein could serve as a potential serodiagnostic candidate for sarcoptic mange in rabbits.
Assuntos
Pirofosfatase Inorgânica/genética , Sarcoptes scabiei/genética , Sarcoptes scabiei/imunologia , Escabiose/diagnóstico , Testes Sorológicos , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Imuno-Histoquímica , Pirofosfatase Inorgânica/imunologia , Pirofosfatase Inorgânica/isolamento & purificação , Coelhos , Sarcoptes scabiei/química , Sarcoptes scabiei/enzimologia , Escabiose/imunologia , Escabiose/parasitologia , Sensibilidade e Especificidade , Pele/parasitologiaRESUMO
BACKGROUND: Scabies impairs the health of humans and animals and causes heavy economic losses. Traditional diagnostic methods for scabies are inefficient and ineffective, and so far there is no commercial immunodiagnostic or molecular based test for scabies. METHODS: Here, we used recombinant Sarcoptes scabiei cofilin protein as an antigen to establish indirect ELISA. S. scabiei cofilin is highly homologous to Dermatophagoides farinae Der f 31 allergen (90% identity). The S. scabiei cofilin gene was cloned and expressed in Escherichia coli to obtain recombinant protein. Western blotting and fluorescence immunohistochemistry were carried out, and we established an indirect ELISA method and detected 33 serum samples from scabies infected rabbits and 30 serum samples from naïve rabbits. RESULTS: Western blotting demonstrated that S. scabiei cofilin possessed good immunogenicity and fluorescence immunohistochemistry showed the S. scabiei cofilin is widespread in the splanchnic area of mites. In ELISA, a cut-off value of 0.188 was determined to judge experimental positive and negative serum values. Specificity and sensitivity of the ELISA were 87.9 and 83.33%, respectively. CONCLUSIONS: Recombinant S. scabiei cofilin showed potential value as a diagnostic antigen. The ELISA method established could be used in clinical diagnosis and provide experimental information in minimal or asymptomatic infection.
Assuntos
Fatores de Despolimerização de Actina/genética , Ensaio de Imunoadsorção Enzimática/métodos , Sarcoptes scabiei/genética , Fatores de Despolimerização de Actina/imunologia , Alérgenos/imunologia , Animais , Antígenos/imunologia , Western Blotting , Clonagem Molecular , Escherichia coli , Coelhos , Proteínas Recombinantes/imunologiaRESUMO
Tibetan tea changes during microorganism fermentation. Research on microorganisms in Tibetan tea has focused on their identification, while studies on the influence of specific microorganisms on the components and health functions of Tibetan tea are lacking. Bacillus licheniformis was inoculated into Tibetan tea for intensive fermentation, and the components of B. licheniformis-fermented tea (BLT) were detected by liquid chromatography with tandem mass spectrometry (UHPLC-TOF-MS), and then the effects of BLT on intestinal probiotic functions were investigated by experiments on mice. The results revealed the metabolites of BLT include polyphenols, alkaloids, terpenoids, amino acids, and lipids. Intensified fermentation also improved the antioxidant capacity in vivo and the protective effect on the intestinal barrier of Tibetan tea. In addition, the enhanced fermentation of Tibetan tea exerted intestinal probiotic effects by modulating the relative abundance of short-chain fatty acid-producing bacteria in the intestinal flora. Therefore, intensive fermentation with B. licheniformis can improve the health benefits of Tibetan tea.
RESUMO
Matcha shows promise for diabetes, obesity, and gut microbiota disorders. Studies suggest a significant link between gut microbiota, metabolites, and obesity. Thus, matcha may have a positive impact on obesity by modulating gut microbiota and metabolites. This study used 16S rDNA sequencing and untargeted metabolomics to examine the cecal contents in mice. By correlation analysis, we explored the potential mechanisms responsible for the positive effects of matcha on obesity. The results indicated that matcha had a mitigating effect on the detrimental impacts of a high-fat diet (HFD) on multiple physiological indicators in mice, including body weight, adipose tissue weight, serum total cholesterol (TC), and low-density lipoprotein (LDL) levels, as well as glucose tolerance. Moreover, it was observed that matcha had an impact on the structural composition of gut microbiota and gut metabolites. Specifically, matcha was able to reverse the alterations in the abundance of certain obesity-improving bacteria, such as Alloprevotella, Ileibacterium, and Rikenella, as well as the abundance of obesity-promoting bacteria Romboutsia, induced by a HFD. Furthermore, matcha can influence the levels of metabolites, including formononetin, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate, within the gastrointestinal tract. Additionally, matcha enhances caffeine metabolism and the HIF-1 signaling pathway in the KEGG pathway. The results of the correlation analysis suggest that formononetin, theobromine, 1,3,7-trimethyluric acid, and Vitamin C displayed negative correlation with both the obesity phenotype and microbiota known to exacerbate obesity, while demonstrating positive correlations with microbiota that alleviated obesity. However, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate had the opposite effect. In conclusion, the impact of matcha on gut metabolites may be attributed to its modulation of the abundance of Alloprevotella, Ileibacterium, Rikenella, and Romboutsia within the gastrointestinal tract, thereby potentially contributing to the amelioration of obesity.
RESUMO
As a multi-factorial disease, obesity has become one of the major health problems in the world, and it is still increasing rapidly. Konjac supplementation, as a convenient dietary therapy, has been shown to be able to regulate gut microbiota and improve obesity. However, the specific mechanism by which konjac improves obesity through gut microbiota remains to be studied. In this study, a high-fat diet (HFD) was used to induce a mouse obesity model, and 16S rDNA sequencing and an untargeted metabolomics were used to investigate the impact of konjac on gut microbiota and gut metabolites in HFD-induced obese mice. The results show that konjac can reduce the body weight, adipose tissue weight, and lipid level of high-fat diet induced obese mice by changing the gut microbiota structure and gut metabolic profile. Association analysis revealed that konjac supplementation induced changes in gut microbiota, resulting in the up-regulation of 7-dehydrocholesterol and trehalose 6-phosphate, as well as the down-regulation of glycocholic acid and ursocholic acid within the Secondary bile acid biosynthesis pathway, ultimately leading to improvements in obesity. Among them, g_Acinetobacter (Greengene ID: 911888) can promote the synthesis of 7-dehydrocholesterol by synthesizing ERG3. g_Allobaculum (Greengene ID: 271516) and g_Allobaculum (Greengene ID: 259370) can promote the breakdown of trehalose 6-phosphate by synthesizing glvA. Additionally, the down-regulation of glycocholic acid and ursocholic acid may be influenced by the up-regulation of Lachnospiraceae_NK4A136_group. In conclusion, konjac exerts an influence on gut metabolites through the regulation of gut microbiota, thereby playing a pivotal role in alleviating obesity induced by a high-fat diet.
RESUMO
Globally, ~8%-12% of couples confront infertility issues, male-related issues being accountable for 50%. This review focuses on the influence of gut microbiota and their metabolites on the male reproductive system from five perspectives: sperm quality, testicular structure, sex hormones, sexual behavior, and probiotic supplementation. To improve sperm quality, gut microbiota can secrete metabolites by themselves or regulate host metabolites. Endotoxemia is a key factor in testicular structure damage that causes orchitis and disrupts the blood-testis barrier (BTB). In addition, the gut microbiota can regulate sex hormone levels by participating in the synthesis of sex hormone-related enzymes directly and participating in the enterohepatic circulation of sex hormones, and affect the hypothalamic-pituitary-testis (HPT) axis. They can also activate areas of the brain that control sexual arousal and behavior through metabolites. Probiotic supplementation can improve male reproductive function. Therefore, the gut microbiota may affect male reproductive function and behavior; however, further research is needed to better understand the mechanisms underlying microbiota-mediated male infertility.
RESUMO
Introduction: It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain. Methods: In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites. Results: After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.
RESUMO
The family Alloherpesviridae contains herpesviruses of fish and amphibians. Due to the significant economic losses to aquaculture that herpesviruses can cause, the primary areas of research interest are concerning their pathogenesis and prevention. Despite alloherpesvirus genomic sequences becoming more widely accessible, methods regarding their genus/species classification are still relatively unexplored. In the present study, the phylogenetic relationships between 40 completely sequenced alloherpesviruses were illustrated by the viral proteomic tree (ViPTree), which was divided into three monophyletic groups, namely Cyprinivirus, Ictalurivirus and Batrachovirus. Additionally, average nucleotide identity (ANI) and average amino acid identity (AAI) analyses were performed across all available sequences and clearly displayed species boundaries with the threshold value of ANI/AAI set at 90%. Subsequently, core-pan analysis uncovered 809 orthogroups and 11 core genes shared by all 40 alloherpesvirus genome sequences. For the former, a 15 percent identity depicts a clear genus boundary; for the latter, 8 of them may be qualified for phylogenetic analysis based on amino acid or nucleic acid sequences after being verified using maximum likelihood (ML) or neighbor-joining (NJ) phylogenetic trees. Finally, although the dot plot analysis was valid for the members within Ictalurivirus, it was unsuccessful for Cyprinivirus and Batrachovirus. Taken together, the comparison of individual methodologies provides a wide range of alternatives for alloherpesviruses classification under various circumstances.
Assuntos
Herpesviridae , Ictalurivirus , Animais , Filogenia , Proteômica , Herpesviridae/genética , Ictalurivirus/genética , Genômica/métodosRESUMO
Tea polyphenols (TP) are the most biologically active components in tea, with antioxidant, antiobesity, and antitumor properties, as well as the ability to modulate the composition and function of intestinal microbiota. This experimental study evaluated the chemical constituents of polyphenols in Pu-erh (PTP) and Dian Hong tea (DHTP). It also investigated the co-regulatory effects of PTP and DHTP on intestinal flora and liver tissues in mice using 16 S rRNA gene and transcriptome sequencing. The results revealed that DHT had higher concentrations of EGC (epigallocatechin), C (catechin), EC (epicatechin), and EGCG (epigallocatechin gallate). In contrast, PT had higher concentrations of GA (gallic acid), ECG (epicatechin-3-gallate), TF (theaflavin), and TB (theabrownin). PTP and DHTP consumption significantly reduced the rates of weight gain in mice. Microbial community diversity was significantly higher in PTP and DHTP-treated mice than in the control group. Notably, beneficial microbes such as Lactobacillus increased significantly in PTP-treated mice, whereas Lachnospiraceae increased significantly in DHTP-treated mice. Both PTP and DHTP improved the activity of the antioxidant enzymes (SOD) and total antioxidant capacity (T-AOC) in the liver. The transcriptome analysis revealed that the beneficial effects of PTP and DHTP were due to changes in various metabolic pathways, the majority of which were related to antioxidant and lipid metabolism. This study discovered that PTP and DHTP had beneficial effects in mice via the gut-liver axis.
RESUMO
Two component systems (TCS) mediate specific responses to different conditions and/or pressures. In the quorum sensing Glaesserella parasuis (QSE) BC TCS, qseB, as a response regulator, is closely related to the transcriptional regulation of multiple downstream genes. In this study, the effects of qseB gene deletion, which encodes the response regulator of population density sensing in G. parasuis, were studied through biological characteristics and metabolomic analysis. Based on previous research, we further explored the virulence of ΔqseB mutant strains through cell morphology, adhesion and invasion. The ΔqseB mutant and parent strains were sequenced by metabolome and combined with the previous transcriptome sequencing results for joint analysis. This study aims to clarify the regulatory effect of QseB on the virulence of G. parasuis and lay the foundation for revealing the pathogenic mechanism of G. parasuis. We detected 476 different metabolites, of which 30 metabolites (6.3%) had a significant difference in abundance between SC1401 and ΔqseB (p < 0.05). We conducted a comparative analysis of pathway enrichment on the transcriptome and metabolome, and found that the two omics participate in seven metabolic pathways together. The top 10 KEGG pathways with the largest number of genes and metabolites identified in this experiment are ABC transporters, Biosynthesis of secondary metabolites, Cysteine and methionine metabolism, Purine metabolism, Pyrimidine metabolism, Metabolic pathways, and Nicotinate and nicotinamide metabolism. Analysis of metabolome sequencing results showed that differential metabolites were also enriched in metabolic pathways, such as Purine metabolism, cGMP-PKG signaling pathway and cAMP signaling pathway, which were not found in transcriptome sequencing data. The internal coloration of the mutant strain ΔqseB was uneven, and the adhesion and invasion ability of PAM cell lines were significantly reduced. We speculate that QseB may affect the adhesion and invasion ability of Glaesserella parasuis by influencing substance transport and signal transduction.
Assuntos
Haemophilus parasuis , Percepção de Quorum , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Haemophilus parasuis/genética , Haemophilus parasuis/metabolismo , Purinas , Percepção de Quorum/genéticaRESUMO
The widespread two-component system (TCS), QseBC, involves vital virulence regulators in Enterobacteriaceae and Pasteurellaceae. Here we studied the function of QseBC in Glaesserella parasuis. A ΔqseBC mutant was constructed using a Glaesserella parasuis serovar 11 clinical strain SC1401 by natural transformation. Immunofluorescence was used to evaluate cellular adhesion, the levels of inflammation and apoptosis. The ability of ΔqseBC and ΔqseC mutant strains to adhere to PAM and MLE-12 cells was significantly reduced. Additionally, by focusing on the clinical signs, H&E, and IFA for inflammation and apoptosis, we found that the ΔqseBC mutant weakened virulence in the murine models. Together, these findings suggest that QseBC plays an important role in the virulence of Glaesserella parasuis.
Assuntos
Enterobacteriaceae , Inflamação , Animais , Camundongos , Virulência/genéticaRESUMO
Members of the family Iridoviridae (iridovirids) are globally distributed and trigger adverse economic and ecological impacts on aquaculture and wildlife. Iridovirids taxonomy has previously been studied based on a limited number of genomes, but this is not suitable for the current and future virological studies as more iridovirids are emerging. In our study, 57 representative iridovirids genomes were selected from a total of 179 whole genomes available on NCBI. Then 18 core genes were screened out for members of the family Iridoviridae. Average amino acid sequence identity (AAI) analysis indicated that a cut-off value of 70% is more suitable for the current iridovirids genome database than ICTV-defined 50% threshold to better clarify viral genus boundaries. In addition, more subgroups were divided at genus level with the AAI threshold of 70%. This observation was further confirmed by genomic synteny analysis, codon usage preference analysis, genome GC content and length analysis, and phylogenic analysis. According to the pairwise comparison analysis of core genes, 9 hallmark genes were screened out to conduct preliminary identification and investigation at the genus level of iridovirids in a more convenient and economical manner.
RESUMO
Average nucleotide identity (ANI) is a prominent approach for rapidly classifying archaea and bacteria by recruiting both whole genomic sequences and draft assemblies. To evaluate the feasibility of ANI in virus taxon demarcation, 685 poxviruses were assessed. Prior to the analysis, the fragment length and threshold of the ANI value were optimized as 200 bp and 98 per cent, respectively. After ANI analysis and network visualization, the resulting sixty-one species (ANI species rank) were clustered and largely consistent with the groupings found in National Center for Biotechnology Information Virus [within the International Committee on Taxonomy of Viruses (ICTV) Master Species List]. The species identities of thirty-four other poxviruses (excluded by the ICTV Master Species List) were also identified. Subsequent phylogenetic analysis and Guanine-Cytosine (GC) content comparison done were found to support the ANI analysis. Finally, the BLAST identity of concatenated sequences from previously identified core genes showed 91.8 per cent congruence with ANI analysis at the species rank, thus showing potential as a marker gene for poxviruses classification. Collectively, our results reveal that the ANI analysis may serve as a novel and efficient method for poxviruses demarcation.