Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 53(4): 2053-7, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24483938

RESUMO

Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.

2.
ChemElectroChem ; 6(2): 566-573, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31008014

RESUMO

Electrical double-layer capacitors (EDLCs) commonly denoted supercapacitors are rechargeable energy storage devices with excellent power and energy delivery metrics intermediate to conventional capacitors and batteries. High-voltage aqueous electrolyte based EDLCs are particularly attractive due to their high-power capability, facile production, and environmental advantages. EDLCs should last for thousands of cycles and evaluation of future cell chemistries require long-term and costly galvanostatic cycling. Voltage holding tests have been proposed to shorten evaluation time by accelerating cell degradation processes. Whether voltage holding can replace cycling completely remains undemonstrated. In this work, a systematic investigation of the influence of testing procedure on cell performance is presented. The state-of-the-art post-mortem and operando experimental techniques are implemented to elucidate ageing mechanisms and kinetics inside EDLC cells under different testing procedures. Carbon corrosion occurring on the positively polarized electrode leads to the lower active surface area and higher oxygen content. On the contrary, an increase of surface area and micropore volume are observed on the negatively polarized electrode. Repeated galvanostatic cycles at U<1.6 V appears to facilitate the depletion of oxygen species on the positively polarized electrode in comparison with voltage holding, which indicates a more complex degradation mechanism during cycling. Caution is advised when comparing results from different test procedures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa