Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Anal Chem ; 96(15): 6045-6054, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569073

RESUMO

Plastic pollution pervades natural environments and wildlife. Consequently, high-throughput detection methods for plastic debris are urgently needed. A novel method was developed to detect plastic debris larger than 0.5 mm, which integrated an extraction method with low organic loss and plastic damage alongside a classification method for fused images. This extraction method broadened the size range of the remaining plastic debris, while the fusion solved the low spatial resolution of hyperspectral images and the absence of spectral information in red-green-blue (RGB) images. This method was validated for plastic debris in digestate, compost, and sludge, with extraction demonstrating 100% recovery rates for all samples. After fusion, the spatial resolution of hyperspectral images was improved about five times. Classification recall for the fused hyperspectral images achieved 97 ± 8%, surpassing 83 ± 29% of the raw images. Application of this method to solid digestate detected 1030 ± 212 items/kg of plastic debris, comparable with the conventional Fourier transform infrared spectroscopic result of 1100 ± 436 items/kg. This developed method can investigate plastic debris in complex matrices, simultaneously addressing a wide range of sizes and types. This capability helps acquire reliable data to predict secondary microplastic generation and conduct a risk assessment.

2.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905014

RESUMO

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Assuntos
Espectrometria de Massas , Esgotos , Esgotos/química , Compostos Orgânicos/química , Fracionamento Químico , Modelos Teóricos , Águas Residuárias/química
3.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
4.
Environ Res ; 246: 118139, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191048

RESUMO

With the implementation of municipal solid waste source segregation, the enormous sorted biogenic waste has become an issue that needs to be seriously considered. Anaerobic digestion, which can produce biogas and extract floating oil for biodiesel production, is the most prevalent treatment in China for waste management and greenhouse gas (GHG) emissions reduction, in accordance with Sustainable Development Goal 13 of the United Nations. Herein, a large-scale biogas plant with a capacity of 1000 tonnes of biogenic waste (400 tonnes of restaurant biogenic waste and 600 tonnes of kitchen biogenic waste) per day was investigated onsite using material flow analysis, and the parts of the biogas plant were thoroughly analyzed, especially the pretreatment system for biogenic waste impurity removal and homogenization. The results indicated that the loss of the total biodegradable organic matter was 41.8% (w/w) of daily feedstock and the loss of biogas potential was 18.8% (v/v) of daily feedstock. Life cycle assessment revealed that the 100-year GHG emissions were -61.2 kgCO2-eq per tonne biogenic waste. According to the sensitivity analysis, pretreatment efficiency, including biodegradable organic matter recovery and floating oil extraction, considerably affected carbon reduction potential. However, when the pretreatment efficiency deteriorated, GHG benefits of waste source segregation and the subsequent biogenic waste anaerobic digestion would be reduced.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Efeito Estufa , Anaerobiose , Carbono , Gerenciamento de Resíduos/métodos , Resíduos Sólidos , Eliminação de Resíduos/métodos
5.
J Environ Sci (China) ; 139: 483-495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105071

RESUMO

The significant increase in the demand for biomass waste treatment after garbage classification has led to housefly larvae treatment becoming an attractive treatment option. It can provide a source of protein while treating biomass waste, which means that nutrients can be returned to the natural food chain. However, the performance of this technology in terms of its environmental impacts is still unclear, particularly with regards to global warming potential (GWP).This study used a life cycle assessment (LCA) approach to assess a housefly larvae treatment plant with a treatment capacity of 50 tons of biomass waste per day. The LCA results showed that the 95% confidence intervals for the GWP in summer and winter were determined to be 24.46-32.81 kg CO2 equivalent (CO2-eq)/ton biomass waste and 5.37-10.08 kg CO2-eq/ton biomass waste, respectively. The greater GWP value in summer is due to the longer ventilation time and higher ventilation intensity in summer, which consumes more power. The main GWP contributions are from (1) electricity needs (accounting for 78.6% of emissions in summer and 70.2% in winter) and (2) product substitution by mature housefly larvae and compost (both summer and winter accounting for 96.8% of carbon reduction).


Assuntos
Compostagem , Moscas Domésticas , Animais , Aquecimento Global , Larva , Dióxido de Carbono
6.
Anal Chem ; 95(9): 4412-4420, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36820858

RESUMO

Insights into carbon sources (biogenic and fossil carbon) and contents in solid waste are vital for estimating the carbon emissions from incineration plants. However, the traditional methods are time-, labor-, and cost-intensive. Herein, high-quality data sets were established after analyzing the carbon contents and infrared spectra of substantial samples using elemental analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Then, five classification and eight regression machine learning (ML) models were evaluated to recognize the proportion of biogenic and fossil carbon in solid waste. Using the optimized data preprocessing approach, the random forest (RF) classifier with hyperparameter tuning ranked first in classifying the carbon group with a test accuracy of 0.969, and the carbon contents were successfully predicted by the RF regressor with R2 = 0.926 considering performance-interpretability-computation time competition. The above proposed algorithms were further validated with real environmental samples, which exhibited robust performance with an accuracy of 0.898 for carbon group classification and an R2 value of 0.851 for carbon content prediction. The reliable results indicate that ATR-FTIR coupled with ML algorithms is feasible for rapidly identifying both carbon groups and content, facilitating the calculation and assessment of carbon emissions from solid waste incineration.

7.
Environ Sci Technol ; 57(42): 16033-16042, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37822265

RESUMO

Halogenated organic compounds in wastewater are persistent and bioaccumulative contaminants of great concern, but few are known at the molecular level. Herein, we focus on nontarget screening of halogenated dissolved organic matter (DOM) in highly concentrated organic matrices of waste leachates and their concentrates. Solid-phase extraction (SPE) was optimized before capturing halogenated signatures via HaloSeeker 2.0 software on mining full-scan high-resolution mass spectrometry (HRMS) fingerprints. This study identified 438 Cl-/Br-containing DOM formulas in 21 leachates and membrane concentrates. Among them, 334 formulas were achieved via SPE with mixed-sorbent cartridges (mixed-SPE), surpassing the 164 formulas achieved through Bond Elut PPL cartridges (PPL-SPE). Herein, only four samples identified via PPL-SPE exhibited a resolution of >50% for extracted Cl-/Br-containing DOM by either SPE. The halogenated DOM constituted 6.87% of the total DOM mass features. Nevertheless, more abundant adsorbable organic halogens deciphered waste leachates and highly concentrated waste streams as reservoirs for halogenated contaminants. Remarkably, 75.7-98.1% of Cl-/Br-containing DOM in primary membrane concentrates remained stable through the secondary membrane treatment, indicating the persistence of these unknown contaminants even post-treatment.


Assuntos
Matéria Orgânica Dissolvida , Compostos Orgânicos , Espectrometria de Massas , Compostos Orgânicos/análise , Águas Residuárias , Extração em Fase Sólida/métodos
8.
J Environ Manage ; 336: 117651, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878058

RESUMO

Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.


Assuntos
Odorantes , Olfato , Humanos , Odorantes/análise , Olfatometria , Poluição Ambiental , Algoritmos
9.
J Environ Sci (China) ; 128: 150-160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801031

RESUMO

The development of methods for the efficient treatment and application of food waste digestate is an important research goal. Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization, however, studies on the application and performance of digestate in vermicomposting are rarely. The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae. Restaurant food waste (RFW) and household food waste (HFW) were selected to assess the effects of waste type on vermicomposting performance and larval quality. Waste reduction rates of 50.9%-57.8% were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%, which were slightly lower than those for treatments without the addition of digestate (62.8%-65.9%). The addition of digestate increased the germination index, with a maximum value of 82% in the RFW treatments with 25% digestate, and decreased the respiration activity, with a minimum value of 30 mg-O2/g-TS. The larval productivity of 13.9% in the RFW treatment system with a digestate rate of 25% was lower that without digestate (19.5%). Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate. These results suggest that mixing digestate at a low ratio (25%) during vermicomposting of food waste especially RFW could lead to considerable larval biomass and generate relatively stable residues.


Assuntos
Moscas Domésticas , Eliminação de Resíduos , Animais , Alimentos , Larva , Eliminação de Resíduos/métodos , Estudos de Viabilidade
10.
Waste Manag Res ; : 734242X231187578, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455515

RESUMO

The importance and urgency of domestic solid waste (DSW) source segregation in universities is self-evident. Although many universities have carried out waste management, however, a comprehensive summary for successful implementation work of DSW segregation is lacking. This study summarizes the mechanism of DSW segregation in Chinese university based on questionnaire survey, on-site inquiry and sampling analysis in a comprehensive university in Shanghai. Questionnaire survey show that it is critical for encouraging students to participate in waste segregation to build convenient segregation facilities and humanized segregation reward and punishment method. The strengthened publicity and education due to the advantages in environmental discipline, easy-operating waste dumping site/facility as well as personalized solutions for different functional areas (teaching building) were considerably important strategies for implementing efficient waste segregation. The recyclables that were collected by intelligent recycling device and mobile recycling enterprise were dominated by paper, and the amounts increased dramatically during the graduation season. Therefore, the university correspondingly increased the collection frequencies of waste and the number of segregation guiders in the period to decrease the potential risk of fire safety. The study could provide a valuable reference for efficient implementation of waste segregation on university/college in China.

11.
J Environ Sci (China) ; 126: 174-183, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503747

RESUMO

It is the key to control bio-derived dissolved organic matters (DOM) in order to reduce the effluent concentration of wastewater treatment, especially for waste leachate with high organic contaminants. In the present study, the anaerobic degradation of aerobically stabilized DOM was investigated with DOM substrate isolated through electrodialysis. The degradation of bio-derived DOM was confirmed by reduction of 15% of total organic carbon in 100 days. We characterized the molecular behavior of bio-derived DOM by coupling molecular and biological information analysis. Venn based Sankey diagram of mass features showed the transformation of bio-derived DOM mass features. Occurrence frequency analysis divided mass features into six categories so as to distinguish the fates of intermediate metabolites and persistent compounds. Reactivity continuum model and machine learning technologies realized the semi-quantitative determination on the kinetics of DOM mass features in the form of pseudo-first order, and confirmed the reduction of inert mass features. Furthermore, network analysis statistically establish relationship between DOM mass features and microbes to identify the active microbes that are able to utilize bio-derived DOM. This work confirmed the biological technology is still effective in controlling recalcitrant bio-derived DOM during wastewater treatment.


Assuntos
Matéria Orgânica Dissolvida , Cinética
12.
Environ Sci Technol ; 56(12): 8897-8907, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35588324

RESUMO

Undesirable ammonium concentrations can lead to unstable anaerobic digestion processes, and Methanosarcina spp. are the representative methanogens under inhibition. However, no known work seems to exist for directly exploring the detailed metabolic regulation of pure cultured representative Methanosarcina spp. to ammonium inhibition. We used transcriptomics and proteomics to profile the metabolic regulation of Methanosarcina barkeri to 1, 4, and 7 g N/L of total ammoniacal nitrogen (TAN), where free ammonia concentrations were between 1.5 and 36.1 mg N/L. At the initial stages of ammonium inhibition, the genes participating in the acquisition and assimilation of reduced nitrogen sources showed significant upregulation where the minimal fold change of gene transcription was about 2. Apart from nitrogen metabolism, the transcription of some genes in methanogenesis also significantly increased at the initial stages. For example, the genes encoding alternative heterodisulfide reductase subunits (HdrAB), energy-converting hydrogenase subunit (EchC), and methanophenazine-dependent hydrogenase subunits (VhtAC) were significantly upregulated by at least 2.05 times. For the element translocation at the initial stages, the genes participating in the uptake of ferrous iron, potassium ion, and molybdate were significantly upregulated with a minimal fold change of 2.10. As the cultivation proceeded, the gene encoding the cell division protein subunit (FtsH) was significantly upregulated by 13.0 times at 7 g N/L of TAN; meanwhile, an increment in OD600 was observed at the terminal sampling point of 7 g N/L of TAN. The present study explored the metabolic regulation of M. barkeri in stress response, protein synthesis, signal transduction, nitrogen metabolism, methanogenesis, and element translocation. The results would contribute to the understanding of the metabolic effects of ammonium inhibition on methanogens and have significant practical implication in inhibited anaerobic digestion.


Assuntos
Compostos de Amônio , Hidrogenase , Compostos de Amônio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Metano/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Nitrogênio/metabolismo
13.
Environ Sci Technol ; 56(20): 14753-14762, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36166304

RESUMO

A 4-set Venn diagram model oriented to high-resolution mass spectrometry (HRMS) data was developed to decipher the fate of dissolved organic matters (DOM) in three-stage continuous wastewater treatment processes. In total, 24 typical wastewater treatment modes conceptualized into a combination of three stages were generalized so that this model can be applied to all common types of actual wastewater treatment processes. As a result, eight kinds of native DOM and seven kinds of wastewater-produced (WW-produced) DOM separately represented by each proper subset of the 4-set Venn diagram could be identified so as to offer a molecular profile of DOM transformation. The 15 proper subsets of the 4-set Venn diagram could then explain how different wastewater treatment units work. Transformation rates of each DOM molecular formula can be estimated as a semiquantitative result. We further discussed the relationship between the transformation rates and proper subsets. As a proof of concept, the 4-set Venn diagram model was successfully applied in a complicated full-scale mature leachate treatment process with nine treatment units. This model can help to overcome the challenging task of data mining when applying HRMS and reduce the workload of data screening in the subsequent structural annotation.


Assuntos
Águas Residuárias , Purificação da Água , Espectrometria de Massas/métodos , Águas Residuárias/química
14.
Environ Res ; 214(Pt 4): 114136, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995226

RESUMO

Process monitoring is an essential measure to achieve efficient and stable performance in anaerobic digestion, thus requiring identification of effective early warning indicators. However, the application of early warning indicators to full-scale dry anaerobic engineering biogas plant still remains elusive. This study evaluated the effectiveness of common early warning indicators (including CH4, CO2, H2S, volatile fatty acids (VFAs), alkalinity (ALK), total ammonia concentration (TAN) and free ammonia concentration (FAN)) in monitoring the instability of anaerobic digestion process at a practical engineering plant. The results showed that the individual indicators could not provide a sufficient early warning time before the digester fell into failure collapse. In comparison, the coupling indicators (the ratio of CH4/CO2, CH4/pH, and CH4/H2S) had sensitive response to perturbation, which could regard as a potential early warning indicator, with the early warning time of 6, 7 and 10 days, respectively. Moreover, the VFA/ALK could be used as auxiliary indicators due to the limitation of complex detection methods. In addition, the result also indicated that the application of some warning indicators needs to be further verified, when transferring the result of laboratory scale to the practice application scenarios. This study provides insight into the stable operation of dry anaerobic engineering.


Assuntos
Amônia , Reatores Biológicos , Anaerobiose , Biocombustíveis , Dióxido de Carbono , Ácidos Graxos Voláteis , Metano , Receptores Proteína Tirosina Quinases
15.
J Environ Manage ; 323: 116248, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126598

RESUMO

The loess regions distribute widely in Northwestern China, North America and Eastern Europe. For these regions, landfill is a suitable technology for solid waste treatment. However, as a landfill cover material, loess is not very effective in controlling the emission of malodorous gases. The present study modified loess with biologically stabilized leachate, and investigated the capacities and mechanisms of the modified loess to remove odorous NH3 and H2S. The removal rates of NH3 and H2S at different acclimation time, targeted gas concentrations and temperatures were measured. It was found that the NH3 removal rate of the modified loess was up to 0.08 µmol/(g·hr), which was 1.8 times that of the virgin loess. The H2S removal rate of the modified loess was up to 1.74 µmol/(g·hr), which was 1.25 times that of the virgin loess. The half-meter loess layer modified by biologically stabilized leachate achieved nearly 100% removal of H2S. The improvement of NH3 and H2S removal ability was mainly due to the enrichment of relevant microorganisms. This work proposed a novel method for in-situ control of malodorous pollutants in landfills in the loess regions, and proved that the in-situ removal of NH3 and H2S using the loess modified with biologically stabilized leachate is feasible and cost-effective.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos , China , Gases , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Sulfeto de Hidrogênio/química , Amônia/química
16.
Water Sci Technol ; 85(2): 549-561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100138

RESUMO

A large pool of ammonia in mature leachate is challenging to treat with a membrane bioreactor system to meet the discharge Standard for Pollution Control on the Landfill Site of Municipal Solid Waste in China (GB 16889-2008) without external carbon source addition. In this study, an engineering leachate treatment project with a scale of 2,000 m3/d was operated to evaluate the ammonia heat extraction system (AHES), which contains preheat, decomposition, steam-stripping, ammonia recovery, and centrifuge dewatering. The operation results showed that NH3-N concentrations of raw leachate and treated effluent from an ammonia heat extraction system (AHES) were 1,305-2,485 mg/L and 207-541 mg/L, respectively. The ratio of COD/NH3-N increased from 1.40-1.84 to 7.69-28.00. Nitrogen was recovered in the form of NH4HCO3 by the ammonia recovery tower with the introduction of CO2, wherein the mature leachate can offer 37% CO2 consumption. The unit consumptions of steam and power were 8.0% and 2.66 kWh/m3 respectively, and the total operation cost of AHES was 2.06 USD per cubic metre of leachate. These results confirm that heat extraction is an efficient and cost-effective technology for the recovery of nitrogen resource from mature leachate.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Reatores Biológicos , Temperatura Alta , Resíduos Sólidos
17.
J Environ Sci (China) ; 102: 99-109, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637269

RESUMO

Increase of sewage sludge (SS) has led to the construction of more incineration plants, exacerbating to the production of SS incineration residues. However, few studies have considered the mass balance of elements in large-scale SS incineration plants, affecting the residues treatment and utilization. In this study, flow analysis was conducted for major and trace elements in the SS, the fly ash (sewage sludge ash, SSA) and bottom ash from two large-scale SS incineration plants. The elemental characteristics were compared with those of coal fly ash (CFA), and air pollution control residues from municipal solid waste incineration (MSWIA), as well as related criteria. The results showed that the most abundant major element in SSA was Si, ranging from 120 to 240 g/kg, followed by Al (76-348 g/kg), Ca (26-113 g/kg), Fe (35-80 g/kg), and P (26-104 g/kg), and the trace elements were mainly Zn, Ba, Cu, and Mn. Not all the major elements were derived from SS. Most trace elements in the SS incineration residues accounted for 82.4%-127% of those from SS, indicating that SS was the main source of trace elements. The partitioning of heavy metals in the SS incineration residues showed that electrostatic precipitator ash or cyclone ash with high production rates were the major pollutant sinks. The differences in some major and trace elements could be indicators to differentiate SSA from CFA and MSWIA. Compared with related land criteria, the pollutants in SSA should not be ignored during disposal and utilization.


Assuntos
Metais Pesados , Oligoelementos , Cinza de Carvão , Incineração , Metais Pesados/análise , Esgotos , Resíduos Sólidos/análise
18.
J Environ Manage ; 239: 23-29, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877970

RESUMO

Biochar application is a promising management strategy for enhancing soil fertility and carbon sequestration. A 3-year pot trial was conducted to demonstrate the relationship between rice grain yield and biochar-amended soil properties together with carbon storage in the Yangtze River estuary, China. Straw biochar was incorporated once into soil in pots at five different rates: 0%, 5%, 10%, 15%, and 20% (dry biochar weight/wet soil weight). Compared to yields from the control treatment with no biochar, rice grain yield was improved by 29.1-34.2% in the treatments with 10-15% biochar in the first year following biochar application. In the second year following biochar application, the rice yield was increased by 51.8-96.0% in the treatments with 15-20% biochar. However, compared to the control treatment, hardly any yield increase occurred in any of the biochar treatments in the third year following biochar application. Higher amounts of added biochar increased the soil organic carbon (SOC) and total nitrogen (TN). SOC contents were invariable and increased nearly 60-250% annually in the biochar treatments compared with the control. Biochar increased soil TN 22.9-75.3%, 24.0-60.9% and 13.8-51.2%, respectively, in each of three consecutive years. Biochar increased the mean concentrations of EC, RAP, RAK and DOC by 8.8-44.8%, 10.0-61.1%, 65.6-310.1% and 9.1-20.0%, respectively, during the three rice-growing seasons. The addition of 10-15% straw biochar to soil and regular annual biochar supplements for agronomic purposes is a potentially sustainable management technology to enhance coastal mudflat soil properties and improve rice yields therefrom.


Assuntos
Oryza , Solo , Carvão Vegetal , China
19.
J Environ Sci (China) ; 85: 17-34, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471024

RESUMO

Is our food safe and free of the crisis of antibiotics and antibiotic resistance (AR)? And will the derived food waste (FW) impose AR risk to the environment after biological treatment? This study used restaurant FW leachates flowing through a 200 tons-waste/day biological treatment plant as a window to investigate the fate of antibiotics and antibiotic-resistance genes (ARGs) during the acceptance and treatment of FW. Sulfonamides (sulfamethazine, sulfamethoxazole) and quinolones (ciprofloxacin, enrofloxacin, ofloxacin) were detected during FW treatment, while tetracyclines, macrolides and chloramphenicols were not observable. ARGs encoding resistance to sulfonamides, tetracyclines and macrolides emerged in FW leachates. Material flow analysis illustrated that the total amount of antibiotics (except sulfamethazine) and ARGs were constant during FW treatment processes. Both the concentration and total amount of most antibiotics and ARGs fluctuated during treatment, physical processes (screening, centrifugation, solid-liquid and oil-water separation) did not decrease antibiotic or ARGs concentrations or total levels permanently; the affiliated wastewater treatment plant appeared to remove sulfonamides and most ARGs concentrations and total amount. Heavy metals Ni, Co and Cu were important for disseminating antibiotics concentrations and MGEs for distributing ARGs concentrations. Humic substances (fulvic acids, hydrophilic fractions), C-associated and N-associated contents were essential for the distribution of the total amounts of antibiotics and ARGs. Overall, this study implied that human food might not be free of antibiotics and ARGs, and FW was an underestimated AR pool with various determinants. Nonetheless, derived hazards of FW could be mitigated through biological treatment with well-planned daily operations.


Assuntos
Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Genes Bacterianos , Metais Pesados/análise , Restaurantes , Águas Residuárias/química , Águas Residuárias/microbiologia
20.
J Environ Sci (China) ; 86: 50-64, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31787190

RESUMO

Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.


Assuntos
Eliminação de Resíduos de Serviços de Saúde/métodos , Caproatos , Caprilatos , Ácidos Carboxílicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa