Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cells Tissues Organs ; : 1-14, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236699

RESUMO

INTRODUCTION: Patient-derived organoids have emerged as a promising in vitro model for precision medicine, particularly in cancer, but also in noncancer-related diseases. However, the optimal culture medium for culturing patient-derived lung organoids has not yet been agreed upon. This study aimed to shed light on the optimal selection of a culture media for developing studies using patient-derived lung organoids. METHODS: Tumor and normal paired tissue from 71 resected non-small cell lung cancer patients were processed for organoid culture. Lung cancer organoids (LCOs) were derived from tumor tissue and normal lung organoids (LNOs) from nonneoplastic lung tissue. Three different culture media were compared: permissive culture medium (PCM), limited culture medium (LCM), and minimum basal medium (MBM). We assessed their effectiveness in establishing organoid cultures, promoting organoid growth and viability, and compared their differential phenotypic characteristics. RESULTS: While PCM was associated with the highest success rate and useful for long-term expansion, MBM was the best option to avoid normal organoid overgrowth in the organoid culture. The density, size, and viability of LNOs were reduced using LCM and severely affected with MBM. LNOs cultured in PCM tend to differentiate to bronchospheres, while alveolosphere differentiation can be observed in those cultured with LCM. The morphological phenotype of LCO was influenced by the culture media of election. Mesenchymal cell overgrowth was observed when LCM was used. CONCLUSION: This work highlights the importance of considering the research objectives when selecting the most suitable culture medium for growing patient-derived lung organoids.

2.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806142

RESUMO

In resected non-small cell lung cancer (NSCLC), post-surgical recurrence occurs in around 40% of patients, highlighting the necessity to identify relapse biomarkers. An analysis of the extracellular vesicle (EV) cargo from a pulmonary tumor-draining vein (TDV) can grant biomarker identification. We studied the pulmonary TDV EV-miRNAome to identify relapse biomarkers in a two-phase study (screening and validation). In the screening phase, a 17-miRNA relapse signature was identified in 18 selected patients by small RNAseq. The most expressed miRNA from the signature (EV-miR-203a-3p) was chosen for further validation. Pulmonary TDV EV-miR-203a-3p was studied by qRT-PCR in a validation cohort of 70 patients, where it was found to be upregulated in relapsed patients (p = 0.0194) and in patients with cancer spread to nearby lymph nodes (N+ patients) (p = 0.0396). The ROC curve analysis showed that TDV EV-miR-203a-3p was able to predict relapses with a sensitivity of 88% (AUC: 0.67; p = 0.022). Moreover, patients with high TDV EV-miR-203a-3p had a shorter time to relapse than patients with low levels (43.6 vs. 97.6 months; p = 0.00703). The multivariate analysis showed that EV-miR-203a-3p was an independent, predictive and prognostic post-surgical relapse biomarker. In conclusion, pulmonary TDV EV-miR-203a-3p is a promising new relapse biomarker for resected NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs/genética , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Recidiva Local de Neoplasia/genética
3.
Stem Cell Res Ther ; 15(1): 263, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183355

RESUMO

BACKGROUND: During pseudoglandular stage of the human lung development the primitive bronchial buds are initially conformed by simple tubules lined by endoderm-derived epithelium surrounded by mesenchyme, which will progressively branch into airways and start to form distal epithelial saculles. For first time alveolar type II (AT2) pneumocytes appears. This study aims to characterize the genes and microRNAs involved in this differentiation process and decipher its role in the starting alveolar differentiation. METHODS: Gene and microRNA profiling was performed in human embryonic lungs from 7 to 12 post conception weeks (pcw). Protein expression location of candidate genes were analyzed by immunofluorescense in embryonic lung tissue sections. mRNA/miRNA target pairs were identified using computational approaches and their expression was studied in purified epithelial/mesenchymal cell populations and in isolated tips and stalks from the bronchial tree. Additionally, silencing experiments in human embryonic lung mesenchymal cells and in human embryonic tip-derived lung organoids were performed, as well as organoid differentiation studies. AT2 cell markers were studied by qRT-PCR and by immunofluorescence. The TGFB-ß phosphorylated pathways was analyzed with membrane protein arrays. Lung explants were cultured in air/liquid interface with/without peptides. RESULTS: We identified 88 differentially expressed genes, including IGFBP3. Although IGFBP3 mRNA was detected in both epithelial and mesenchymal populations, the protein was restricted to the epithelium, indicating post-transcriptional regulation preventing IGFBP3 protein expression in the mesenchyme. MicroRNA profiling identified miR-34a as an IGFBP3 regulator. miR-34a was up-regulated in mesenchymal cells, and its silencing in human embryonic lung mesenchymal cells increased IGFBP3 levels. Additionally, IGFBP3 expression showed a marked downregulation from 7 to 12 pcw, suggesting its involvement in the differentiation process. The differentiation of human tip-derived lung embryonic organoids showed a drastic reduction in IGFBP3, supported by the scRNAseq data. IGFBP3 silencing in organoids activated an alveolar-like differentiation process characterized by stem cell markers downregulation and upregulation of AT2 markers. This process was mediated by TGFß signalling inhibition and BMP pathway activation. CONCLUSIONS: The IGFBP3/miR-34a axis restricts IGFBP3 expression in the embryonic undifferentiated lung epithelium, and the progressive downregulation of IGFBP3 during the pseudoglandular stage is required for alveolar differentiation.


Assuntos
Diferenciação Celular , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Pulmão , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Pulmão/metabolismo , Pulmão/embriologia , Pulmão/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
4.
J Exp Clin Cancer Res ; 41(1): 37, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081981

RESUMO

BACKGROUND: When genes responsible for normal embryonic development are abnormally expressed in adults, it can lead to tumor development. This can suggest that the same mechanism that controls embryonic differentiation can also control tumor differentiation. We hypothesize that the malignant phenotype of lung cancer cells could acquire benign characteristics when in contact with an embryonic lung microenvironment. We cultured two lung cancer cell lines in embryonic lung mesenchyme-conditioned medium and evaluated morphological, functional and molecular changes. METHODS: The human embryonic mesenchymal lung-conditioned medium (hEML-CM) was obtained by culturing lung cells from embryos in the pseudoglandular stage of development. The NSCLC cell lines A549 and H1299 we cultured in the hEML-CM and in a tumor-conditioned medium. Morphological changes were analyzed with optical and transmission electron microscopy. To evaluate the functional effect of conditioned medium in tumor cells, we analyzed cell proliferation, migration, colony formation capacity in 2D and 3D and in vivo tumor growth capacity. The expression of the pluripotency genes OSKM, the adenocarcinoma marker NKX2-1, the lung surfactant proteins SFTP, the myofibroblast marker MYH and DNMT3A/3B was analyzed with qRT-PCR and the presence of the myofibroblast markers vimentin and α-SMA with immunofluorescence. Transcriptomic analysis was performed using Affymetrix arrays. RESULTS: The A549 and H1299 cells cultured in hEML-CM lost their epithelial morphology, acquired mesodermal characteristics, and decreased proliferation, migration, and colony formation capacity in 2D and 3D, as well as reduced its capacity to growth in vivo. The expression of OSKM, NKX2-1 and SFTP decreased, while that of DNMT3A/3B, vimentin, α-SMA and MYH increased. Distant matrix analysis based on transcriptomic profile showed that conditioned cells were closer to myoblast and human lung fibroblast than to normal epithelial immortalized lung cells. A total of 1631 for A549 and 866 for H1299 differentially expressed genes between control and conditioned cells were identified. CONCLUSIONS: To the best of our knowledge, this is the first study to report that stimuli from the embryonic lung can modulate the malignant phenotype of lung cancer cells, control their growth capacity and activate their differentiation into myofibroblasts. These findings could lead to new strategies for lung cancer management.


Assuntos
Adenocarcinoma de Pulmão/genética , Células-Tronco Embrionárias Humanas/metabolismo , Neoplasias Pulmonares/genética , Miofibroblastos/metabolismo , Adenocarcinoma de Pulmão/fisiopatologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Camundongos Nus , Fenótipo
5.
Transl Oncol ; 14(8): 101144, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34111710

RESUMO

In resected non-small cell lung cancer (NSCLC), postsurgical recurrence is the major factor affecting long-term survival. The identification of biomarkers in extracellular vesicles (EV) obtained from serial blood samples after surgery could enhance early detection of relapse and improve NSCLC outcome. Since EV cargo contains long non-coding RNAs (lncRNAs), we aimed to analyze whether the oncogenic lncRNA HOTTIP, which higher expression in tumor tissue was related to worse outcome in NSCLC, could be detected in EV from NSCLC patients and serve as recurrence biomarker. After purification of EVs by ultracentrifugation in 52 serial samples from 18 NSCLC patients, RNA was isolated and HOTTIP was quantified by Real time PCR. We observed that patients that relapsed after surgery displayed increased postsurgical EV HOTTIP levels in comparison with presurgical levels. In the relapsed patients with several samples available between surgery and relapse, we observed an increment in the EV HOTTIP levels when approaching to relapse, which indicated its potential utility for monitoring disease recurrence. When we focused in EV HOTTIP levels in the first post-surgical sample, we observed that the detection of an increment of the expression levels in comparison to presurgical sample, predicted recurrence with high sensitivity (85.7%) and specificity (90.9%) and that patients had shorter time to relapse and shorter overall survival. In conclusion, our pilot study showed that EV HOTTIP is a potential biomarker for monitoring disease recurrence after surgery in NSCLC.

6.
Transl Lung Cancer Res ; 10(4): 1804-1818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012794

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are non-coding RNAs with a circular structure that have recently emerged as important regulators of tumorogenesis. Recently, several circRNAS, including circ-10720 have been related to epithelial-mesenchymal transition (EMT) process. In the present study, we have analyzed the role of circ-10720 in non-small-cell lung cancer (NSCLC) and studied its prognostic relevance in resected stage I-IIIa NSCLC patients. METHODS: Circ-10720 expression was analyzed using a custom TaqMan assay in four NSCLC cell lines (HCC44, A549, H23 and H1299) and in the normal immortalized lung cell line BEAS2B. Silencing of circ-10720 was performed using two custom siRNAs which were transfected using lipofectamine 2000. Protein levels were evaluated by Western blot and immunofluorescence. Wound healing and invasion assays were performed to evaluate the impact the circRNA on cell motility. Apoptosis was analyzed by evaluation of Caspase 3-7 activity and proliferation by MTS assay. Moreover, the expression levels of the circRNA were studied in 119 resected NSCLC patients. The expression in tumor tissue was correlated with the main clinicopathological characteristics and with time to relapse (TTR). RESULTS: Circ-10720 was overexpressed in HCC44 and A549 and underexpressed in H23 and H1299 NSCLC cell lines in comparison to BEAS2B normal immortalized lung cell line. CircRNA knockdown in the two circ-10720 overexpressing cell lines was associated with a decrease of Vimentin (VIM) and an increase of E-cadherin (CDH1) protein levels, loss of mesenchymal phenotype, and a significant reduction of migration and invasion capacity. After silencing circ-10720, the apoptosis rate increased and the proliferation was significantly reduced. Furthermore, circ-10720 was upregulated in tumor vs. normal tissue from 119 resected NSCLC patients. In the group of patients not receiving adjuvant treatment, those with high levels of circ-10720 had a shorter TTR than those with low levels and emerged as an independent prognostic value in the multivariate analysis. In tumor tissue, circ-10720 levels positively correlated with the EMT gene Twist1 levels. CONCLUSIONS: Circ-10720 regulates EMT, apoptosis and proliferation and acts as a biomarker of relapse in NSCLC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa