Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2122595119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609195

RESUMO

Despite recent advances in cancer therapy, hard-to-reach, unidentified tumors remain a significant clinical challenge. A promising approach is to treat locatable and accessible tumors locally and stimulate antitumor immunity in situ to exert systemic effects against distant tumors. We hypothesize that a carrier of immunotherapeutics can play a critical role in activating antitumor immunity as an immunoadjuvant and a local retainer of drug combinations. Here, we develop a polyethyleneimine-lithocholic acid conjugate (2E'), which forms a hydrophobic core and cationic surface to codeliver hydrophobic small molecules and anionic nucleic acids and activates antigen-presenting cells via the intrinsic activities of 2E' components. 2E' delivers paclitaxel and small-interfering RNA (siRNA) targeting PD-L1 (or cyclic dinucleotide, [CDN]) to induce the immunogenic death of tumor cells and maintain the immunoactive tumor microenvironment, and further activates dendritic cells and macrophages, leveraging the activities of loaded drugs. A single local administration of 2E' or its combination with paclitaxel and PD-L1­targeting siRNA or CDN induces strong antitumor immunity, resulting in immediate regression of large established tumors, tumor-free survival, an abscopal effect on distant tumors, and resistance to rechallenge and metastasis in multiple models of murine tumors, including CT26 colon carcinoma, B16F10 melanoma, and 4T1 breast cancer. This study supports the finding that local administration of immunotherapeutics, when accompanied by the rationally designed carrier, can effectively protect the host from distant and recurrent diseases.


Assuntos
Neoplasias , Ácidos Nucleicos , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácidos Nucleicos/uso terapêutico , Paclitaxel/uso terapêutico , Polímeros/uso terapêutico
2.
Environ Sci Technol ; 58(1): 545-556, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38111342

RESUMO

The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).


Assuntos
Amônia , Bactérias , Amônia/análise , Amônia/metabolismo , Bactérias/metabolismo , Dióxido de Nitrogênio/análise , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Esgotos/microbiologia , Óxido Nitroso/análise , Oxigênio/análise , Desnitrificação
3.
Environ Sci Technol ; 58(4): 1954-1965, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38239129

RESUMO

Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.


Assuntos
Microplásticos , Óxido Nitroso , Óxido Nitroso/análise , Plásticos , Cloreto de Polivinila/metabolismo , Desnitrificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , Oxirredução
4.
Arch Insect Biochem Physiol ; 115(2): e22093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409870

RESUMO

Toll, immune deficiency and prophenoloxidase cascade represent vital immune signaling pathways in insects. Peptidoglycan recognition proteins (PGRPs) are innate immune receptors that activate and regulate the immune signaling pathways. Previously, we reported that BmPGPR-L4 was induced in the silkworm Bombyx mori larvae by bacteria and peptidoglycan challenges. Here, we focused on the function of BmPGRP-L4 in regulating the expression of antimicrobial peptides (AMPs). The hemolymph from BmPGRP-L4-silenced larvae exhibited an enhanced inhibitory effect on the growth of Escherichia coli, either by growth curve or inhibitory zone experiments. Coincidentally, most of the AMP genes were upregulated after RNAi of BmPGRP-L4. Oral administration of heat-inactivated E. coli and Staphylococcus aureus after RNAi of BmPGRP-L4 resulted in the increased expression of BmPGRP-L4 in different tissues of the silkworm larvae, revealing an auto-regulatory mechanism. By contrast, the expression of most AMP genes was downregulated by oral bacterial administration after RNAi of BmPGRP-L4. The above results demonstrate that BmPGRP-L4 recognizes bacterial pathogen-associated molecular patterns and negatively regulates AMP expression to achieve immunological homeostasis. As a negative regulator, BmPGPR-L4 is proposed to be involved in the feedback regulation of the immune signaling pathways of the silkworm to prevent excessive activation of the immune response.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Imunidade Humoral , Escherichia coli , Bactérias/metabolismo , Proteínas de Insetos/metabolismo , Larva
5.
Bioorg Med Chem ; 24(23): 6194-6205, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769672

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1)-mediated kynurenine pathway of tryptophan degradation is identified as an important immune effector pathway in the tumor cells to escape a potentially effective immune response. IDO1 is an attractive target for anticancer therapy and the discovery of IDO1 inhibitors has been intensely ongoing in both academic research laboratories and pharmaceutical organizations. Our study discovered that 1H-indazole was a novel key pharmacophore with potent IDO1 inhibitory activity. A series of new 1H-indazole derivatives were synthesized and determined the enzyme inhibitory activities, and the compound 2g exhibited the highest activity with an IC50 value of 5.3µM. The structure-activity relationships (SARs) analysis of the 1H-indazole derivatives as novel IDO1 inhibitors indicated that the 1H-indazole scaffold is necessary for IDO1 inhibition, and the substituent groups at the both 4-position and 6-position largely affect inhibitory activity. The docking model exhibited that the effective interactions of 1H-indazoles with ferrous ion of heme and key residues of hydrophobic Pocket A and B ensured the IDO1 inhibitory activities. The study suggested that the 1H-indazole was a novel interesting scaffold for IDO inhibition for further development.


Assuntos
Benzilaminas/farmacologia , Indazóis/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Benzilaminas/síntese química , Benzilaminas/química , Sítios de Ligação , Descoberta de Drogas , Heme/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Indazóis/síntese química , Indazóis/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
Eur J Pharm Biopharm ; 197: 114203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302049

RESUMO

RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.


Assuntos
Hepatopatias , Nanopartículas , Vacinas , Humanos , Preparações Farmacêuticas , RNA Interferente Pequeno/genética , Hepatopatias/tratamento farmacológico , Nanopartículas/química
7.
Sci Total Environ ; 944: 173955, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879031

RESUMO

The screening and design of "green" biochar materials with high adsorption capacity play a pivotal role in promoting the sustainable treatment of Cd(II)-containing wastewater. In this study, six typical machine learning (ML) models, namely Linear Regression, Random Forest, Gradient Boosting Decision Tree, CatBoost, K-Nearest Neighbors, and Backpropagation Neural Network, were employed to accurately predict the adsorption capacity of Cd(II) onto biochars. A large dataset with 1051 data points was generated using 21 input variables obtained from batch adsorption experiments, including preparation conditions for biochar (2 features), physical properties of biochar (4 features), chemical composition of biochar (9 features), and adsorption experiment conditions (6 features). The rigorous evaluation and comparison of the ML models revealed that the CatBoost model exhibited the highest test R2 value (0.971) and the lowest RMSE (20.54 mg/g), significantly outperforming all other models. The feature importance analysis using Shapley Additive Explanations (SHAP) indicated that biochar chemical compositions had the greatest impact on model predictions of adsorption capacity (42.2 %), followed by adsorption conditions (37.57 %), biochar physical characteristics (12.38 %), and preparation conditions (7.85 %). The optimal experimental conditions optimized by partial dependence plots (PDP) are as follows: as high Cd(II) concentration as possible, C(%) of 33 %, N(%) of 0.3 %, adsorption time of 600 min, pyrolysis time of 50 min, biochar dosage of less than 2 g/L, O(%) of 42 %, biochar pH value of 11.2, and DBE of 1.15. This study unveils novel insights into the adsorption of Cd(II) and provides a comprehensive reference for the sustainable engineering of biochars in Cd(II) wastewater treatment.


Assuntos
Cádmio , Carvão Vegetal , Aprendizado de Máquina , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Cádmio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Modelos Químicos , Recuperação e Remediação Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos
8.
J Hazard Mater ; 472: 134565, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743974

RESUMO

Biochar shows great potential in soil cadmium pollution treatment, however, the effect and mechanisms of biochar on cadmium passivation (CP) during the long-term process of soil from flooding to natural air-drying are not clear. In this study, a 300-day experiment was conducted to keep the flooded water level constant for the first 100 days and then dried naturally. Mechanisms of CP by lignin biochar (LBC) were analyzed through chemical analysis, FTIR-2D-COS, EEMs-PARAFAC, ultraviolet spectroscopy characterizations, and microbial community distribution of soil. Results showed that application of LBC results in rapid CP ratio in soil within 35 days, mainly in the residual and Fe-Mn bound states (total 72.80%). CP ratio further increased to 90.89% with water evaporation. The CP mechanisms include precipitation, electrostatic effect, humus complexation, and microbial remediation by promoting the propagation of fungi such as Penicillium and Trichoderma. Evaporation of water promoted the colonization of aerobic microorganisms and then increased the degree of soil humification and aromatization, thereby enhancing the cadmium passivation. Simultaneously, the biochar could reduce the relative abundance of plant pathogens in soil from 1.8% to 0.03% and the freshness index (ß/α) from 0.64 to 0.16, favoring crop growth and promoting carbon sequestration and emission reduction.


Assuntos
Cádmio , Carvão Vegetal , Lignina , Microbiologia do Solo , Poluentes do Solo , Carvão Vegetal/química , Cádmio/química , Poluentes do Solo/química , Lignina/química , Inundações , Solo/química , Dessecação
9.
J Hazard Mater ; 467: 133618, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335612

RESUMO

Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.


Assuntos
Desulfovibrio , Enxofre , Humanos , Compostos de Enxofre , Corrosão , Esgotos
10.
Environ Sci Pollut Res Int ; 31(7): 10874-10886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212563

RESUMO

In the context of carbon neutrality, promoting resource utilization of industrial alkali lignin addressing heavy metal pollution is crucial for China's pollution alleviation and carbon reduction. Microwave pyrolysis produced functionalized biochar from industrial alkali lignin for Ni(II) adsorption. LB400 achieved 343.15 mg g-1 saturated adsorption capacity in 30 min. Pseudo-second-order kinetic and Temkin isotherm models accurately described the adsorption, which was endothermic and spontaneous (ΔGÏ´ < 0, ΔHÏ´ > 0). Quantitative analysis revealed that both dissolved substances and carbon skeleton from biochar contributed to adsorption, with the former predominates (93.76%), including mineral precipitation NiCO3 (Qp) and adsorption of dissolved organic matter (QDOM). Surface complexation (Qc) and ion exchange (Qi) on the carbon skeleton accounted for 6.3%. Higher biochar preparation temperature reduced Ni(II) adsorption by dissolved substances. Overall, biochar which comes from the advantageous disposal of industrial lignin effectively removes Ni(II) contamination, encouraging ecologically sound treatment of heavy metal pollution and sustainable resource utilization.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Lignina , Adsorção , Carvão Vegetal , Carbono , Álcalis , Cinética
11.
J Hazard Mater ; 470: 134181, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569343

RESUMO

Electrochemically in-situ generation of oxygen and caustic soda is promising for sulfide management while suffers from scaling, poor inactivating capacity, hydrogen release and ammonia escape. In this study, the four-compartment electrochemical cell efficiently captured oxygen molecules from the air chamber to produce HO2- without generating toxic by-products. Meanwhile, the catalyst layer surface of PTFE/CB-GDE maintained a relatively balanced gas-liquid micro-environment, enabling the formation of enduring solid-liquid-gas interfaces for efficient HO2- electrosynthesis. A dramatic increase in HO2- generation rate from 453.3 mg L-1 h-1 to 575.4 mg L-1 h-1 was attained by advancement in operation parameters design (flow channels, electrolyte types, flow rates and circulation types). Stability testing resulted in the HO2- generation rate over 15 g L-1 and the current efficiency (CE) exceeding 85%, indicating a robust stable operational capacity. Furthermore, after 120 mg L-1 HO2- treatment, an increase of 11.1% in necrotic and apoptotic cells in the sewer biofilm was observed, higher than that achieved with the addition of NaOH, H2O2 method. The in-situ electrosynthesis strategy for HO2- represents a significance toward the practical implementation of sulfide abatement in sewers, holding the potential to treat various sulfide-containing wastewater.

12.
Environ Sci Ecotechnol ; 20: 100341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38094258

RESUMO

Municipal wastewater treatment plays an indispensable role in enhancing water quality by eliminating contaminants. While the process is vital, its environmental footprint, especially in terms of greenhouse gas (GHG) emissions, remains underexplored. Here we offer a comprehensive assessment of GHG emissions from wastewater treatment plants (WWTPs) across China. Our analyses reveal an estimated 1.54 (0.92-2.65) × 104 Gg release of GHGs (CO2-eq) in 2020, with a dominant contribution from N2O emissions and electricity consumption. We can foresee a 60-65% reduction potential in GHG emissions with promising advancements in wastewater treatment, such as cutting-edge biological techniques, intelligent wastewater strategies, and a shift towards renewable energy sources.

13.
Sci Total Environ ; 873: 162446, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841401

RESUMO

Nitrous oxide (N2O) is an inevitable intermediate generated during the nitrogen removal process of granule-based simultaneous nitrification and denitrification (SND) system. In order to alleviate N2O production while maintaining a desired total nitrogen (TN) removal level in this system, a comprehensive evaluation of the contribution pathways and process parameters affecting N2O turnovers is keenly required. Therefore, mathematical models were applied to evaluate the impact of operating conditions and unravel potential mechanisms on TN removal performance and N2O production. Simulation results show that higher N2O production (11.6 %-14.2 %) occurs at higher dissolved oxygen (DO) concentrations, lower chemical oxygen demand (COD) levels, longer hydraulic retention time (HRT) and larger granule size in the granular SND system. The relative conversion rates of nitrogenous components in different regions within the granule influence N2O turnovers, with the nitrification process occurring only in the region 200 µm inward from the granule surface and denitrification working throughout the entire granule. In the inner region of the granule (0-300 µm), the heterotrophic bacteria (HB) denitrification pathway dominates N2O production as a source of N2O. While in the outer region (300-450 µm), HB denitrification acts as a sink for N2O and regulates N2O turnovers (i.e. production and reduction of N2O) together with the hydroxylamine (NH2OH) pathway that is the main contributor of N2O production. Moreover, simultaneous adjustment of multiple operating parameters within a certain range can lower the N2O production factor (<0.5 %) while achieving the desired TN removal efficiency (>80 %), resulting in a feasible N2O mitigation strategy.

14.
Water Res ; 243: 120326, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454457

RESUMO

Biofilm process such as integrated fixed-film activated sludge (IFAS) system has been preliminarily found to produce less nitrous oxide (N2O) than suspended sludge system. However, the N2O emission behaviors and underlying N2O mitigation mechanism in such hybrid system remain unclear. This study therefore aims to fully unveil the roles of biofilm in reducing N2O emission in a nitrifying IFAS system with the aid of some advanced technologies such as N2O microsensor and site-preference analysis. It was found that ammonia oxidation occurred mostly in the sludge flocs (˃ 86%) and biofilm could reduce N2O emission by 43.77% in a typical operating cycle. Biofilm not only reduced nitrite accumulation in nitrification process, inhibiting N2O production via nitrifier denitrification pathway, but also served as a N2O sink, promoting the reduction of N2O via endogenous denitrification. As a result, N2O emissions from the IFAS system were 50%-83% lower than those from the solo sludge flocs. Further, more N2O emission was reduced in the presence of biofilm with decreasing the dissolved oxygen level in the range of 0.5-3.0 mg O2/L. Microbial community and key enzyme analyses revealed that biofilm had relatively high microbial diversity and unique enzyme composition, providing a reasonable explanation for the changed contributions of different N2O production pathways and reduced N2O emission.


Assuntos
Reatores Biológicos , Esgotos , Nitrificação , Nitritos/metabolismo , Biofilmes , Óxido Nitroso/metabolismo , Oxigênio/análise , Desnitrificação
15.
Adv Drug Deliv Rev ; 192: 114635, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503885

RESUMO

For systemically delivered nanoparticles to reach target tissues, they must first circulate long enough to reach the target and extravasate there. A challenge is that the particles end up engaging with serum proteins and undergo immune cell recognition and premature clearance. The serum protein binding, also known as protein corona formation, is difficult to prevent, even with artificial protection via "stealth" coating. Protein corona may be problematic as it can interfere with the interaction of targeting ligands with tissue-specific receptors and abrogate the so-called active targeting process, hence, the efficiency of drug delivery. However, recent studies show that serum protein binding to circulating nanoparticles may be actively exploited to enhance their downstream delivery. This review summarizes known issues of protein corona and traditional strategies to control the corona, such as avoiding or overriding its formation, as well as emerging efforts to enhance drug delivery to target organs via nanoparticles. It concludes with a discussion of prevailing challenges in exploiting protein corona for nanoparticle development.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/metabolismo , Proteínas Sanguíneas/metabolismo , Sistemas de Liberação de Medicamentos , Ligação Proteica
16.
Cell Oncol (Dordr) ; 46(5): 1457-1472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37326803

RESUMO

PURPOSE: Serine metabolism is frequently dysregulated in many types of cancers and the tumor suppressor p53 is recently emerging as a key regulator of serine metabolism. However, the detailed mechanism remains unknown. Here, we investigate the role and underlying mechanisms of how p53 regulates the serine synthesis pathway (SSP) in bladder cancer (BLCA). METHODS: Two BLCA cell lines RT-4 (WT p53) and RT-112 (p53 R248Q) were manipulated by applying CRISPR/Cas9 to examine metabolic differences under WT and mutant p53 status. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and non-targeted metabolomics analysis were adopted to identify metabolomes changes between WT and p53 mutant BLCA cells. Bioinformatics analysis using the cancer genome atlas and Gene Expression Omnibus datasets and immunohistochemistry (IHC) staining was used to investigate PHGDH expression. Loss-of-function of PHGDH and subcutaneous xenograft model was adopted to investigate the function of PHGDH in mice BLCA. Chromatin immunoprecipitation (Ch-IP) assay was performed to analyze the relationships between YY1, p53, SIRT1 and PHGDH expression. RESULTS: SSP is one of the most prominent dysregulated metabolic pathways by comparing the metabolomes changes between wild-type (WT) p53 and mutant p53 of BLCA cells. TP53 gene mutation shows a positive correlation with PHGDH expression in TCGA-BLCA database. PHGDH depletion disturbs the reactive oxygen species homeostasis and attenuates the xenograft growth in the mouse model. Further, we demonstrate WT p53 inhibits PHGDH expression by recruiting SIRT1 to the PHGDH promoter. Interestingly, the DNA binding motifs of YY1 and p53 in the PHGDH promoter are partially overlapped which causes competition between the two transcription factors. This competitive regulation of PHGDH is functionally linked to the xenograft growth in mice. CONCLUSION: YY1 drives PHGDH expression in the context of mutant p53 and promotes bladder tumorigenesis, which preliminarily explains the relationship between high-frequency mutations of p53 and dysfunctional serine metabolism in bladder cancer.


Assuntos
Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes p53 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária/genética , Serina/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
Sci Total Environ ; 824: 153865, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176358

RESUMO

Photocatalysis has been considered a promising method for environmental purification. However, powder nanomaterials are not suitable for large-scale application due to the limit of low recyclability and energy-intensive operation. Integrating and depositing powder photocatalysts on monolithic substrates may solve these issues. In this study, a ZIF-8 photocatalyst membrane and its derived product (ZnS photocatalyst membrane) was constructed by a facile in-situ treatment of cellulose-based substrate (take filter paper as an example). Both the two nanomaterials were confirmed to be tightly anchored to filter paper with the aid of chemical interaction. Under visible light irradiation, excellent dynamic-flow photocatalytic removal efficiencies of methylene blue (MB) degradation (97% within 80 min, k = 0.042 ± 0.002 min-1) and Cr(VI) reduction (100% within 60 min, k = 0.116 ± 0.007 min-1) were achieved by the prepared ZIF-8 photocatalyst membrane and its derived ZnS photocatalyst, respectively. Considering the high MB adsorption capacity and facile regeneration process of ZIF-8 photocatalyst membrane, the adsorption-degradation strategy was promising for its universal applications. The MB degradation pathway and photocatalytic mechanisms were also explored. Ultimately, a comprehensive discussion on the advantages and implications of prepared photocatalyst membranes for photocatalytic water treatment was rationally proposed. This study provided a promising method for water decontamination and demonstrated the significant superiority of monolithic membrane for photocatalytic water treatment.


Assuntos
Descontaminação , Purificação da Água , Adsorção , Catálise , Azul de Metileno , Pós , Purificação da Água/métodos
18.
Sci Total Environ ; 815: 151962, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843770

RESUMO

UiO-66, as one of the most stable metal-organic frameworks (MOFs), has attracted a lot of attention in the field of adsorption and photocatalysis. However, this application of UiO-66 is still limited due to either the low accessibility of micropores or the poor electron-hole charge separation capability. This study aims to promote UiO-66 accessibility of micropores and charge separation through the construction of oxygen vacancies (OVs) and mesopore defects as well as copper incorporation. Herein, mesopore Cu doped UiO-66 with rich OVs was synthesized by a one-pot method and demonstrated high efficiency for the removal of ciprofloxacin (CIP) from the aquatic system. First of all, denatured mesopore defects were produced in Cu doped UiO-66 which possessed a 58% increase in specific surface area compared to UiO-66, facilitating the adsorption of molecular oxygen. Secondly, e- was preferentially trapped by OVs under light irradiation. Electron (e-) reacted rapidly with the surface adsorbed oxygen to generate superoxide radical (O2-). Meanwhile, copper incorporation increased the photocurrent and reduced the interfacial charge transfer resistance, thereby improving the charge separation efficiency. As a result, the adsorption efficiency and photocatalytic performance of mesopore Cu doped UiO-66 with OVs were 8.1 and 3.7 times higher than those of UiO-66, respectively. This study paved a way for the one-step synthesis of MOFs containing OVs and broadened the possibilities of practical applications for photo-induced removal of antibiotics from effluent.


Assuntos
Ciprofloxacina , Oxigênio , Adsorção , Catálise , Estruturas Metalorgânicas , Ácidos Ftálicos
19.
Water Res ; 224: 119037, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088769

RESUMO

The ubiquitous microplastics in wastewater have raised growing concerns due to their unintended effects on microbial activities. However, whether and how microplastics affect nitrous oxide (N2O) (a potent greenhouse gas) turnovers in mainstream biological nitrogen removal (BNR) process remain unclear. This work therefore aimed to fill such knowledge gap by conducting both long-term and batch tests. After over 100 days of feeding with wastewater containing polyethylene terephthalate (PET) microplastics (0-500 µg/L), the long-term results showed that both production and reduction of N2O during denitrification were reduced, as well as the N2O production during nitrification. Accordingly, 60% reduction in N2O accumulation and 70% reduction in N2O production were observed in the denitrification and nitrification batch tests, respectively. Nevertheless, the long-term N2O emission factors under PET microplastics stress were comparable to that in the control reactor, mainly because PET microplastics led to more nitrite accumulation in anoxic period. With the aid of online N2O sensors and site-preference analysis, it was demonstrated that the heterotrophic bacteria pathway and ammonia oxidizing bacteria denitrification pathway for N2O production were negatively affected by PET microplastics, whereas a clear increase in the contribution of hydroxylamine pathway (+ 22.9%) was observed. Further investigation revealed that PET microplastics even at environmental level (i.e. 10 µg/L) significantly reshaped the BNR sludge characteristics (e.g. much larger particle size) and microbial communities (e.g. Thauera, Rhodobacte and Nitrospira) as well as the nitrogen metabolism pathways, which were chiefly responsible for the changes of N2O turnovers and N2O production pathways under the PET microplastics stress.


Assuntos
Gases de Efeito Estufa , Esgotos , Amônia/análise , Reatores Biológicos/microbiologia , Desnitrificação , Gases de Efeito Estufa/análise , Hidroxilaminas/análise , Microplásticos , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Plásticos/análise , Polietilenotereftalatos/análise , Esgotos/microbiologia , Águas Residuárias/análise
20.
Chemosphere ; 284: 131386, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34323787

RESUMO

Porous metal-organic frameworks (MOFs) with visible-light response have attracted much attention in the field of environmental purification and solar energy conversion. In this study, MIL-100(Fe) was modified with Bi2WO6 nanosheets by a facile hydrothermal method to fabricate a photocatalyst with direct Z-scheme heterojunction. When treating the tetracycline (TC) solution under natural sunlight, 12 wt%MIL-100(Fe)/Bi2WO6 obtained the highest apparent rate constant of (6.59 ± 0.52)✕10-3 L mg-1 min-1, which was 16.1 and 3.9 times than that of pristine MIL-100(Fe) and Bi2WO6, respectively. In addition to explore the feasibility of sunlight-activated MIL-100(Fe)/Bi2WO6 to remove TC under various conditions, the degradation intermediates and their possible transformation pathway were provided with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. The results of Escherichia coli culture demonstrated that the biotoxicity variation of TC solution would first increase and then decrease with the photodegradation time. Ultimately, based on the results of bandgap calculation, radicals trapping and charge flow tracking experiments, the direct Z-scheme heterojunction between MIL-100(Fe) and Bi2WO6 nanosheets was confirmed and the photocatalytic mechanism for TC degradation was rationally proposed. This work enriched MOFs-based heterojunction photocatalysts and provided a promising method to eliminate hazardous TC from aqueous solution.


Assuntos
Estruturas Metalorgânicas , Antibacterianos , Catálise , Luz Solar , Tetraciclina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa