Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Adv Sci (Weinh) ; : e2402473, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962911

RESUMO

Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.

3.
EBioMedicine ; 93: 104593, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169688

RESUMO

Viral respiratory infections (VRIs) cause seasonal epidemics and pandemics, with their transmission influenced by climate conditions. Despite the risks posed by novel VRIs, the relationships between climate change and VRIs remain poorly understood. In this review, we synthesized existing literature to explore the connections between changes in meteorological conditions, extreme weather events, long-term climate warming, and seasonal outbreaks, epidemics, and pandemics of VRIs from an interdisciplinary perspective. We proposed a comprehensive conceptual framework highlighting the potential biological, socioeconomic, and ecological mechanisms underlying the impact of climate change on VRIs. Our findings suggested that climate change increases the risk of VRI emergence and transmission by affecting the biology of viruses, host susceptibility, human behavior, and environmental conditions of both society and ecosystems. Further interdisciplinary research is needed to address the dual challenge of climate change and pandemics.


Assuntos
Pneumonia , Viroses , Humanos , Pandemias , Ecossistema , Surtos de Doenças , Mudança Climática
4.
Front Nutr ; 10: 1149317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063327

RESUMO

Background: Observational studies have revealed associations between diet and lung cancer. However, it is unclear whether the association is disturbed by confounding factors. We used a two-sample Mendelian randomization (MR) method to characterize the associations between diet and the lung cancer risk (including 3 subtypes: lung adenocarcinoma (LA), squamous cell lung carcinoma (SqCLC), and small cell lung cancer (SCLC)). Materials and methods: Data on 20 diets were screened from the UK Biobank. Lung cancer data came from a large meta-analysis of 85,716 individuals. The inverse-variance weighted method was used as the main analysis. Sensitivity analysis was also used to explain the different multiplicity patterns of the final model. Results: Our results showed significant evidence that 3 diets were associated with lung cancer [odds ratio (OR): 0.271, 95% confidence interval (CI): 0.150-0.488, p = 1.46 × 10-4, dried fruit; OR: 3.010, 95% CI: 1.608-5.632, p = 5.70 × 10-4, beer] and SqCLC (OR: 0.135, 95% CI: 0.062-0.293, p = 2.33 × 10-5, dried fruit; OR: 0.485, 95% CI: 0.328-0.717, p = 2.9 × 10-4, cheese). There were also suggestive correlations between 5 dietary intakes and lung cancer (OR: 0.441, 95% CI: 0.250-0.778, p = 0.008, cereal; OR: 2.267, 95% CI: 1.126-4.564, p = 0.022, beef), LA (OR: 0.494, 95% CI: 0.285-0.858, p = 0.012, dried fruit; OR: 3.536, 95% CI: 1.546-8.085, p = 0.003, beer) and SCLC (OR: 0.006, 95% CI: 0.000-0.222, p = 0.039, non-oily fish; OR: 0.239, 95% CI: 0.086-0.664, p = 0.006, dried fruit). No other association between diet and lung cancer was observed. Conclusion: Our study preliminary found that cheese, dried fruit, and beer intake were significantly associated with the risk of lung cancer or its subtypes, while cereal, beef, and non-oily fish intake were suggestively associated with the risk of lung cancer or its subtypes. Well-designed prospective studies are still needed to confirm our findings in the future.

5.
RSC Adv ; 10(19): 11450-11454, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495299

RESUMO

Materials with spin dimers have attracted much attention in the last several decades because they could provide a playground to embody simple quantum spin models. For example, the Bose-Einstein condensation of magnons has been observed in TlCuCl3 with anti-ferromagnetic Cu2Cl6 dimers. In this work, we have synthesized a new kind of single-crystal Li11RbGd4Te6O30 with Gd2O15 dimers. This material belongs to the rhombohedral system with the lattice parameters: a = b = c = 16.0948 Å and α = ß = γ = 33.74°. First-principles calculations indicate that Li11RbGd4Te6O30 is a wide-bandgap (about 4.5 eV) semiconductor. But unlike many other well studied quantum dimer magnets with an anti-ferromagnetic ground state, the Gd2O14 dimers in Li11RbGd4Te6O30 show ferromagnetic intra-dimer exchange interactions according to our calculations. Our work provides a new material which could possibly extend the studies of the spin dimers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa