RESUMO
The ongoing outbreaks of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in unprecedented challenges to global health. To effectively contain the COVID-19 transmission, rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. To address the huge need for ever-increasing tests, we developed a facile all-in-one nucleic acid testing assay by combining Si-OH activated glass bead (aGB)-based viral RNA fast extraction and in situ colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) detection in a single tube. aGBs demonstrate a strong ability to capture viral RNA in a guanidinium-based lysis buffer, and the purified aGBs/RNA composite, without RNA elution step, could be directly used to perform RT-LAMP assay. The assay was well characterized by using a novel SARS-CoV-2-like coronavirus GX/P2V, and showed a limit of detection (LOD) of 15 copies per µL in simulated clinical samples within 50 min. We further demonstrated our assay by testing simulated SARS-CoV-2 pseudovirus samples, showing an LOD of 32 copies per µL and high specificity without cross-reactivity with the most closely related GX/P2V or host DNA/RNA. The all-in-one approach developed in this study has the potential as a simple, scalable, and time-saving alternative for point-of-care testing of SARS-CoV-2 in low-income regions, as well as a promising tool for at-home testing.
Assuntos
COVID-19 , SARS-CoV-2 , Colorimetria , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , RNA Viral/genética , Sensibilidade e EspecificidadeRESUMO
Nucleic acid testing with high sensitivity and specificity is of great importance for accurate disease diagnostics. Here, we developed an in situ one-tube nucleic acid testing assay. In this assay, the target nucleic acid is captured using magnetic silica beads, avoiding an elution step, followed directly by the polymerase chain reaction (PCR) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a detection. This assay achieved visual readout and a sensitivity of 120 copies/mL for detecting SARS-CoV-2. More importantly, the assay demonstrated over 95% sensitivity and 100% specificity compared to the gold standard real-time quantitative PCR (RT-qPCR) test by using 75 SARS-CoV-2 clinical samples. By integrating nested PCR and Cas12a, this all-in-one nucleic acid testing approach enables ultrasensitive, highly specific, and cost-effective diagnosis at community clinics and township hospitals.
RESUMO
BACKGROUND: The monkeypox virus (MPXV) is a linear double-stranded DNA virus with a large genome that causes tens of thousands of infections and hundreds of deaths in at least 40 countries and regions worldwide. Therefore, timely and accurate diagnostic testing could be an important measure to prevent the ongoing spread of MPXV and widespread epidemics. RESULTS: Here, we designed multiple sets of primers for the target region of MPXV for loop-mediated isothermal amplification (LAMP) detection and identified the optimal primer set. Then, the specificity in fluorescent LAMP detection was verified using the plasmids containing the target gene, pseudovirus and other DNA/RNA viruses. We also evaluated the sensitivity of the colorimetric LAMP detection system using the plasmid and pseudovirus samples, respectively. Besides, we used monkeypox pseudovirus to simulate real samples for detection. Subsequent to the establishment and introduction of a magnetic beads (MBs)-based nucleic acid extraction technique, an integrated device was developed, characterized by rapidity, high sensitivity, and remarkable specificity. This portable system demonstrated a visual detection limit of 137 copies/mL, achieving sample-to-answer detection within 1 h. SIGNIFICANCE: The device has the advantages of integration, simplicity, miniaturization, and visualization, which help promote the realization of accurate, rapid, portable, and low-cost testing. Meanwhile, this platform could facilitate efficient, cost-effective and easy-operable point-of-care testing (POCT) in diverse resource-limited settings in addition to the laboratory.
Assuntos
Colorimetria , Monkeypox virus , Técnicas de Amplificação de Ácido Nucleico , Colorimetria/métodos , Colorimetria/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentaçãoRESUMO
As an aquatic animal of great commercial relevance, Penaeus vannamei is currently the dominant species of cultured shrimp in China and many other countries worldwide. In recent years, the outbreak of glass post-larvae disease (GPD), which accounts for more than 90% of the mortality of shrimp seedlings in serious cases, in many regions of China has caused significant losses and threatened the sustainability of the aquaculture industry and the economy. It is extremely urgent to determine the infectious agent of GPD in P. vannamei. In this work, we performed metagenomic sequencing of glass post-larvae collected from diseased prawns in Tangshan Hebei, where GPD broke out recently. An evolutionary tree was constructed by MEGA 7 to understand the evolutionary history and relationship of the pathogen genome. A novel virus in the family Marnaviridae was first identified in P. vannamei suffering from GPD, and we tentatively named this virus Baishivirus (GenBank: ON550424). The identified pathogen was validated according to Koch's rule with a pathogenic challenge assay and reverse transcription-polymerase chain reaction. There was only 8% query coverage with 64.96% identity in the Baishivirus genome when compared with its most closely related genome sequence of Wenzhou picorna-like virus 21 reported in 2016. Baishivirus genomic RNA is 9.895 kb in length and encodes three potential open reading frames (ORFs). The identification of Baishivirus in P. vannamei enriches the family Marnaviridae and potentially provides a new candidate to study and prevent GPD in the aquaculture industry.
Assuntos
Penaeidae , Vírus de RNA , Animais , Genoma , Genômica , ChinaRESUMO
Nucleic acid testing is the most widely used detection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Currently, a number of COVID-19 real-time quantitative reverse transcription PCR (qPCR) kits with high sensitivity and specificity are available for SARS-CoV-2 testing. However, these qPCR assays are not always reliable in detecting low viral load samples (Ct-value ≥ 35), resulting in inconclusive or false-negative results. Here, we used a Poisson distribution to illustrate the inconsistent performance of qPCR tests in detecting low viral load samples. From this, we concluded that the false-negative outcomes resulted from the random occurrences of sampling zero target molecules in a single test, and the probability to sample zero target molecules in one test decreased significantly with increasing purified RNA or initial sample input volume. At a given RNA concentration of 0.5 copy/µL, the probability of sampling zero RNA molecules decreased from 36.79% to close to 0.67% after increasing the RNA input volume from 2 to 10 µL. A SARS-CoV-2 qPCR assay with an LOD of 300 copies/mL was used to validate the improved consistency of the qPCR tests. We found that the false-negative qPCR results of clinical COVID-19 samples with a Ct ≥ 35 decreased by 50% after increasing the input of purified RNA from 2 to 10 µL. The consistency, accuracy, and robustness of nucleic acid testing for SARS-CoV-2 samples with low viral loads can be improved by increasing the sample input volume.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
Pangolins have gained increasing global attention owing to their public health significance as potential zoonotic hosts since the identification of SARS-CoV-2-related viruses in them. Moreover, these animals could carry other respiratory viruses. In this study, we investigated the virome composition of 16 pangolins that died in 2018 with symptoms of pneumonia using metagenomic approaches. A total of eight whole virus sequences belonging to the Paramyxoviridae or Pneumoviridae families were identified, including one human parainfluenza virus 3, one human respiratory syncytial virus A, and six human respiratory syncytial virus B. All of these sequences showed more than 99% nucleotide identity with the virus isolated from humans at the whole-genome level and clustered with human viruses in the phylogenetic tree. Our findings provide evidence that pangolins are susceptible to HPIV3 and HRSV infection. Therefore, public awareness of the threat of pangolin-borne pathogens is essential to stop their human consumption and to prevent zoonotic viral transmission.
Assuntos
COVID-19 , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Animais , Humanos , Pangolins , Vírus da Parainfluenza 3 Humana/genética , Filogenia , Vírus Sincicial Respiratório Humano/genética , SARS-CoV-2RESUMO
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a highly contagious disease. To tame the continuously raging outbreak of COVID-19, developing a cheap, rapid and sensitive testing assay is absolutely imperative. Herein, we developed a one-tube colorimetric RT-LAMP assay for the visual detection of SARS-CoV-2 RNA. The assay integrates Si-OH magnetic beads (MBs)-based fast RNA extraction and rapid isothermal amplification in a single tube, thus bypassing the RNA elution step and directly amplifying on-beads RNA molecules with the visualized results. This one-tube assay has a limit of detection (LOD) as low as 200 copies/mL for sample input volumes of up to 600 µL, and can be performed in less than 1 h from sample collection to result readout. This assay demonstrated a 100% concordance with the gold standard test RT-qPCR test by using 29 clinical specimens and showed high specificity. This one-tube colorimetric RT-LAMP assay can serve as an alternative platform for a rapid and sensitive diagnostic test for COVID-19 and is particularly suitable for use at community clinics or township hospitals.