Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(9): e0148621, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35420461

RESUMO

Following exposure and replication at mucosal surfaces, most alphaherpesviruses invade the peripheral nervous system by retrograde axonal transport and establish lifelong latent infections in the peripheral ganglia. Reactivation of ganglionic infections is followed by anterograde axonal transport of virions back to body surfaces where viral replication results in disease that can range from moderate to severe in presentation. In the case of bovine herpesvirus 1 (BoHV-1), replication in the epithelial mucosa presents as infectious bovine rhinotracheitis (IBR), a respiratory disease of significant economic impact. In this study, we provide a live-cell analysis of BoHV-1 retrograde axonal transport relative to the model alphaherpesvirus pathogen pseudorabies virus (PRV) and demonstrate that this critical neuroinvasive step is conserved between the two viruses. In addition, we report that the BoHV-1 pUL37 tegument protein supports processive retrograde motion in infected axons and invasion of the calf peripheral nervous system. IMPORTANCE A molecular and cellular understanding of the retrograde axonal transport process that underlies the neuroinvasive properties of the alphaherpesviruses is established from studies of herpes simplex virus and pseudorabies virus. The degree to which this phenotype is conserved in other related viruses has largely not been examined. We provide a time-lapse analysis of the retrograde axonal transport kinetics of bovine herpesvirus 1 and demonstrate that mutation of the pUL37 region 2 effector affords a strategy to produce live-attenuated vaccines for enhanced protection of cattle.


Assuntos
Transporte Axonal , Herpesvirus Bovino 1 , Células Receptoras Sensoriais , Proteínas Virais , Animais , Axônios , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/patogenicidade , Células Receptoras Sensoriais/virologia , Proteínas Virais/genética
2.
Vaccines (Basel) ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746524

RESUMO

A randomized control trial was performed over a five-year period to assess the efficacy and antibody response induced by autogenous and commercial vaccine formulations against infectious bovine keratoconjunctivitis (IBK). Calves were randomly assigned each year to one of three arms: an autogenous vaccine treatment that included Moraxella bovis (M. bovis), Moraxella bovoculi, and Mycoplasma bovoculi antigens, a commercial M. bovis vaccine treatment, or a sham vaccine treatment that consisted only of adjuvant. A total of 1198 calves were enrolled in the study. Calves were administered the respective vaccines approximately 21 days apart, just prior to turnout on summer pastures. Treatment effects were analyzed for IBK incidence, retreatment incidence, 205-day adjusted weaning weights, and antibody response to the type IV pilus protein (pili) of M. bovis as measured by a novel indirect enzyme-linked immunosorbent screening assay (ELISA). Calves vaccinated with the autogenous formulation experienced a decreased cumulative incidence of IBK over the entire study compared to those vaccinated with the commercial and sham formulations (24.5% vs. 30.06% vs. 30.3%, respectively, p = 0.25), and had less IBK cases that required retreatment compared to the commercial and sham formulations (21.4% vs. 27.9% vs. 34.3%, respectively, p = 0.15), but these differences were not significant. The autogenous formulation induced a significantly stronger antibody response than the commercial (p = 0.022) and sham formulations (p = 0.001), but antibody levels were not significantly correlated with IBK protection (p = 0.37).

3.
Commun Biol ; 3(1): 760, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311550

RESUMO

The majority of microbiome studies focused on understanding mechanistic relationships between the host and the microbiota have used mice and other rodents as the model of choice. However, the domestic pig is a relevant model that is currently underutilized for human microbiome investigations. In this study, we performed a direct comparison of the engraftment of fecal bacterial communities from human donors between human microbiota-associated (HMA) piglet and mouse models under identical dietary conditions. Analysis of 16S rRNA genes using amplicon sequence variants (ASVs) revealed that with the exception of early microbiota from infants, the more mature microbiotas tested established better in the HMA piglets compared to HMA mice. Of interest was the greater transplantation success of members belonging to phylum Firmicutes in the HMA piglets compared to the HMA mice. Together, these results provide evidence for the HMA piglet model potentially being more broadly applicable for donors with more mature microbiotas while the HMA mouse model might be more relevant for developing microbiotas such as those of infants. This study also emphasizes the necessity to exercise caution in extrapolating findings from HMA animals to humans, since up to 28% of taxa from some donors failed to colonize either model.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biologia Computacional/métodos , Modelos Animais de Doenças , Vida Livre de Germes , Humanos , Metagenoma , Metagenômica/métodos , Camundongos , Filogenia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa