Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(42): 11127-11132, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973954

RESUMO

Extracellular vesicles (EVs) are small vesicles released by cells to aid cell-cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic ß cells to regulate glucose metabolism. Here, using a combination of analytical and biophysical methods in vitro, we tested whether EVs isolated from pancreatic islets of healthy patients and patients with T2D modulate IAPP amyloid formation. We discovered that pancreatic EVs from healthy patients reduce IAPP amyloid formation by peptide scavenging, but T2D pancreatic and human serum EVs have no effect. In accordance with these differential effects, the insulin:C-peptide ratio and lipid composition differ between EVs from healthy pancreas and EVs from T2D pancreas and serum. It appears that healthy pancreatic EVs limit IAPP amyloid formation via direct binding as a tissue-specific control mechanism.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/fisiologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Placa Amiloide/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Circ Res ; 111(1): 66-76, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22556336

RESUMO

RATIONALE: Calcium entry through Orai1 channels drives vascular smooth muscle cell migration and neointimal hyperplasia. The channels are activated by the important growth factor platelet-derived growth factor (PDGF). Channel activation is suggested to depend on store depletion, which redistributes and clusters stromal interaction molecule 1 (STIM1), which then coclusters and activates Orai1. OBJECTIVE: To determine the relevance of STIM1 and Orai1 redistribution in PDGF responses. METHODS AND RESULTS: Vascular smooth muscle cells were cultured from human saphenous vein. STIM1 and Orai1 were tagged with green and red fluorescent proteins to track them in live cells. Under basal conditions, the proteins were mobile but mostly independent of each other. Inhibition of sarco-endoplasmic reticulum calcium ATPase led to store depletion and dramatic redistribution of STIM1 and Orai1 into coclusters. PDGF did not evoke redistribution, even though it caused calcium release and Orai1-mediated calcium entry in the same time period. After chemical blockade of Orai1-mediated calcium entry, however, PDGF caused redistribution. Similarly, mutagenic disruption of calcium flux through Orai1 caused PDGF to evoke redistribution, showing that calcium flux through the wild-type channels had been filling the stores. Acidification of the extracellular medium to pH 6.4 caused inhibition of Orai1-mediated calcium entry and conferred capability for PDGF to evoke complete redistribution and coclustering. CONCLUSIONS: The data suggest that PDGF has a nonclustering mechanism by which to activate Orai1 channels and maintain calcium stores replete. Redistribution and clustering become important, however, when the endoplasmic reticulum stress signal of store depletion arises, for example when acidosis inhibits Orai1 channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Músculo Liso Vascular/efeitos dos fármacos , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Veia Safena/metabolismo , Molécula 1 de Interação Estromal , Tapsigargina/farmacologia , Fatores de Tempo , Transfecção , Proteína Vermelha Fluorescente
3.
Nanomedicine (Lond) ; 14(21): 2799-2814, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724479

RESUMO

Aim: Extracellular vesicles (EVs) are desirable delivery vehicles for therapeutic cargoes. We aimed to load EVs with Cre recombinase protein and determine whether functional delivery to cells could be improved by using endosomal escape enhancing compounds. Materials & methods: Overexpressed CreFRB protein was actively loaded into EVs by rapalog-induced dimerization to CD81FKBP, or passively loaded by overexpression in the absence of rapalog. Functional delivery of CreFRB was analysed using a HEK293 Cre reporter cell line in the absence and presence of endosomal escape enhancing compounds. Results: The EVs loaded with CreFRB by both active and passive mechanisms were able to deliver functional CreFRB to recipient cells only in the presence of endosomal escape enhancing compounds chloroquine and UNC10217938A. Conclusion: The use of endosomal escape enhancing compounds in conjunction with EVs loaded with therapeutic cargoes may improve efficacy of future EV based therapeutics.


Assuntos
Endossomos/metabolismo , Vesículas Extracelulares/química , Integrases/química , Nanocápsulas/química , Transporte Biológico , Cloroquina/química , Cloroquina/metabolismo , Liberação Controlada de Fármacos , Elementos Facilitadores Genéticos , Vesículas Extracelulares/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Integrases/genética , Integrases/metabolismo , Tamanho da Partícula , Multimerização Proteica , Transdução de Sinais
4.
Nanoscale ; 11(14): 6990-7001, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30916672

RESUMO

Extracellular vesicles (EVs) mediate cellular communication through the transfer of active biomolecules, raising interest in using them as biological delivery vehicles for therapeutic drugs. For drug delivery applications, it is important to understand the intrinsic safety and toxicity liabilities of EVs. Nanoparticles, including EVs, typically demonstrate significant accumulation in the liver after systemic administration in vivo. We confirmed uptake of EVs derived from Expi293F cells into HepG2 cells and did not detect any signs of hepatotoxicity measured by cell viability, functional secretion of albumin, plasma membrane integrity, and mitochondrial and lysosomal activity even at high exposures of up to 5 × 1010 EVs per mL. Whole genome transcriptome analysis was used to measure potential effects on the gene expression in the recipient HepG2 cells at 24 h following exposure to EVs. Only 0.6% of all genes were found to be differentially expressed displaying less than 2-fold expression change, with genes related to inflammation or toxicity being unaffected. EVs did not trigger any proinflammatory cytokine response in HepG2 cells. However, minor changes were noted in human blood for interleukin (IL)-8, IL-6, and monocyte chemotactic protein 1 (MCP-1). Administration of 5 × 1010 Expi293F-derived EVs to BALB/c mice did not result in any histopathological changes or increases of liver transaminases or cytokine levels, apart from a modest increase in keratinocyte chemoattractant (KC). The absence of any significant toxicity associated with EVs in vitro and in vivo supports the prospective use of EVs for therapeutic applications and for drug delivery.


Assuntos
Vesículas Extracelulares/fisiologia , Fígado/patologia , Animais , Citocinas/metabolismo , Vesículas Extracelulares/transplante , Células HEK293 , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Albumina Sérica/metabolismo , Transaminases/metabolismo , Transcriptoma
5.
Sci Rep ; 8(1): 5730, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636530

RESUMO

Extracellular vesicles (EVs) have important roles in physiology, pathology, and more recently have been identified as efficient carriers of therapeutic cargoes. For efficient study of EVs, a single-step, rapid and scalable isolation strategy is necessary. Chromatography techniques are widely used for isolation of biological material for clinical applications and as EVs have a net negative charge, anion exchange chromatography (AIEX) is a strong candidate for column based EV isolation. We isolated EVs by AIEX and compared them to EVs isolated by ultracentrifugation (UC) and tangential flow filtration (TFF). EVs isolated by AIEX had comparable yield, EV marker presence, size and morphology to those isolated by UC and had decreased protein and debris contamination as compared to TFF purified EVs. An improved AIEX protocol allowing for higher flow rates and step elution isolated 2.4*1011 EVs from 1 litre of cell culture supernatant within 3 hours and removed multiple contaminating proteins. Importantly AIEX isolated EVs from different cell lines including HEK293T, H1299, HCT116 and Expi293F cells. The AIEX protocol described here can be used to isolate and enrich intact EVs in a rapid and scalable manner and shows great promise for further use in the field for both research and clinical purposes.


Assuntos
Fracionamento Celular , Cromatografia por Troca Iônica , Vesículas Extracelulares , Frações Subcelulares , Fracionamento Celular/métodos , Cromatografia por Troca Iônica/métodos , Filtração , Humanos , Ultracentrifugação
6.
Nat Commun ; 9(1): 5069, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498210

RESUMO

Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein (RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of mutp53's invasive/migratory gain-of-function by increasing RCP-dependent integrin recycling in other tumour cells. This process depends on mutp53's ability to control production of the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podocalyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-invasive extracellular matrix (ECM), and quantitative second harmonic generation microscopy indicates that this ECM displays a characteristic orthogonal morphology. The lung ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence the microenvironment in distant organs in a way that can support invasive growth.


Assuntos
Exossomos/metabolismo , Sialoglicoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Exossomos/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Microscopia de Força Atômica , Mutação/genética , Sialoglicoproteínas/genética , Sialomucinas/genética , Sialomucinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
PLoS One ; 12(11): e0187665, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117231

RESUMO

It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.


Assuntos
Diferenciação Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Ensaio de Imunoadsorção Enzimática , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Suspensões , Fatores de Tempo
8.
Curr Biol ; 23(4): 271-81, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23375895

RESUMO

BACKGROUND: Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear. RESULTS: Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell's ability to repolarize in response to cyclic stretching is perturbed. CONCLUSIONS: Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility.


Assuntos
Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Polaridade Celular , Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Melanoma , Camundongos , Mutação , Osteossarcoma , Ligação Proteica , Talina/metabolismo , Vinculina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa