Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 168(5): 801-816.e13, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215704

RESUMO

DNMT3A mutations occur in ∼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by ∼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.


Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Leucemia Mieloide Aguda/genética , Células da Medula Óssea/patologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Epigênese Genética , Humanos , Leucemia Mieloide Aguda/patologia , Mutação , Análise de Sequência de DNA
2.
Cell ; 150(2): 264-78, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817890

RESUMO

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Assuntos
Evolução Clonal , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Idoso , Análise Mutacional de DNA , Progressão da Doença , Feminino , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Recidiva , Pele/metabolismo , Adulto Jovem
3.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704937

RESUMO

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Assuntos
Análise Citogenética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Sequenciamento Completo do Genoma , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Análise de Sobrevida , Sequenciamento Completo do Genoma/métodos
4.
Blood ; 140(14): 1607-1620, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675516

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) reside in localized microenvironments, or niches, in the bone marrow that provide key signals regulating their activity. A fundamental property of hematopoiesis is the ability to respond to environmental cues such as inflammation. How these cues are transmitted to HSPCs within hematopoietic niches is not well established. Here, we show that perivascular bone marrow dendritic cells (DCs) express a high basal level of Toll-like receptor-1 (TLR1) and TLR2. Systemic treatment with a TLR1/2 agonist induces HSPC expansion and mobilization. It also induces marked alterations in the bone marrow microenvironment, including a decrease in osteoblast activity and sinusoidal endothelial cell numbers. TLR1/2 agonist treatment of mice in which Myd88 is deleted specifically in DCs using Zbtb46-Cre show that the TLR1/2-induced expansion of multipotent HPSCs, but not HSPC mobilization or alterations in the bone marrow microenvironment, is dependent on TLR1/2 signaling in DCs. Interleukin-1ß (IL-1ß) is constitutively expressed in both murine and human DCs and is further induced after TLR1/2 stimulation. Systemic TLR1/2 agonist treatment of Il1r1-/- mice show that TLR1/2-induced HSPC expansion is dependent on IL-1ß signaling. Single-cell RNA-sequencing of low-risk myelodysplastic syndrome bone marrow revealed that IL1B and TLR1 expression is increased in DCs. Collectively, these data suggest a model in which TLR1/2 stimulation of DCs induces secretion of IL-1ß and other inflammatory cytokines into the perivascular niche, which in turn, regulates multipotent HSPCs. Increased DC TLR1/2 signaling may contribute to altered HSPC function in myelodysplastic syndrome by increasing local IL-1ß expression.


Assuntos
Células da Medula Óssea , Células Dendríticas , Células-Tronco Hematopoéticas , Interleucina-1beta , Síndromes Mielodisplásicas , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Interleucina-1beta/metabolismo , Camundongos , Síndromes Mielodisplásicas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , RNA/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845035

RESUMO

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Assuntos
Tolerância Imunológica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Cariótipo , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Indução de Remissão , Fatores de Risco , Análise de Sequência de RNA/métodos , Células Th1/imunologia , Transcriptoma/genética , Resultado do Tratamento
6.
N Engl J Med ; 379(24): 2330-2341, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30380364

RESUMO

BACKGROUND: As consolidation therapy for acute myeloid leukemia (AML), allogeneic hematopoietic stem-cell transplantation provides a benefit in part by means of an immune-mediated graft-versus-leukemia effect. We hypothesized that the immune-mediated selective pressure imposed by allogeneic transplantation may cause distinct patterns of tumor evolution in relapsed disease. METHODS: We performed enhanced exome sequencing on paired samples obtained at initial presentation with AML and at relapse from 15 patients who had a relapse after hematopoietic stem-cell transplantation (with transplants from an HLA-matched sibling, HLA-matched unrelated donor, or HLA-mismatched unrelated donor) and from 20 patients who had a relapse after chemotherapy. We performed RNA sequencing and flow cytometry on a subgroup of these samples and on additional samples for validation. RESULTS: On exome sequencing, the spectrum of gained and lost mutations observed with relapse after transplantation was similar to the spectrum observed with relapse after chemotherapy. Specifically, relapse after transplantation was not associated with the acquisition of previously unknown AML-specific mutations or structural variations in immune-related genes. In contrast, RNA sequencing of samples obtained at relapse after transplantation revealed dysregulation of pathways involved in adaptive and innate immunity, including down-regulation of major histocompatibility complex (MHC) class II genes ( HLA-DPA1, HLA-DPB1, HLA-DQB1, and HLA-DRB1) to levels that were 3 to 12 times lower than the levels seen in paired samples obtained at presentation. Flow cytometry and immunohistochemical analysis confirmed decreased expression of MHC class II at relapse in 17 of 34 patients who had a relapse after transplantation. Evidence suggested that interferon-γ treatment could rapidly reverse this phenotype in AML blasts in vitro. CONCLUSIONS: AML relapse after transplantation was not associated with the acquisition of relapse-specific mutations in immune-related genes. However, it was associated with dysregulation of pathways that may influence immune function, including down-regulation of MHC class II genes, which are involved in antigen presentation. These epigenetic changes may be reversible with appropriate therapy. (Funded by the National Cancer Institute and others.).


Assuntos
Genes MHC da Classe II/fisiologia , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Mutação , Adolescente , Adulto , Idoso , Regulação para Baixo , Epigênese Genética , Feminino , Citometria de Fluxo , Humanos , Imunidade/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , RNA Neoplásico/análise , Recidiva , Análise de Sequência de RNA , Linfócitos T/imunologia , Transplante Homólogo , Sequenciamento do Exoma
7.
N Engl J Med ; 379(11): 1028-1041, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30207916

RESUMO

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for patients with myelodysplastic syndrome (MDS). The molecular predictors of disease progression after transplantation are unclear. METHODS: We sequenced bone marrow and skin samples from 90 adults with MDS who underwent allogeneic hematopoietic stem-cell transplantation after a myeloablative or reduced-intensity conditioning regimen. We detected mutations before transplantation using enhanced exome sequencing, and we evaluated mutation clearance by using error-corrected sequencing to genotype mutations in bone marrow samples obtained 30 days after transplantation. In this exploratory study, we evaluated the association of a mutation detected after transplantation with disease progression and survival. RESULTS: Sequencing identified at least one validated somatic mutation before transplantation in 86 of 90 patients (96%); 32 of these patients (37%) had at least one mutation with a maximum variant allele frequency of at least 0.5% (equivalent to 1 heterozygous mutant cell in 100 cells) 30 days after transplantation. Patients with disease progression had mutations with a higher maximum variant allele frequency at 30 days than those who did not (median maximum variant allele frequency, 0.9% vs. 0%; P<0.001). The presence of at least one mutation with a variant allele frequency of at least 0.5% at day 30 was associated with a higher risk of progression (53.1% vs. 13.0%; conditioning regimen-adjusted hazard ratio, 3.86; 95% confidence interval [CI], 1.96 to 7.62; P<0.001) and a lower 1-year rate of progression-free survival than the absence of such a mutation (31.3% vs. 59.3%; conditioning regimen-adjusted hazard ratio for progression or death, 2.22; 95% CI, 1.32 to 3.73; P=0.005). The rate of progression-free survival was lower among patients who had received a reduced-intensity conditioning regimen and had at least one persistent mutation with a variant allele frequency of at least 0.5% at day 30 than among patients with other combinations of conditioning regimen and mutation status (P≤0.001). Multivariate analysis confirmed that patients who had a mutation with a variant allele frequency of at least 0.5% detected at day 30 had a higher risk of progression (hazard ratio, 4.48; 95% CI, 2.21 to 9.08; P<0.001) and a lower 1-year rate of progression-free survival than those who did not (hazard ratio for progression or death, 2.39; 95% CI, 1.40 to 4.09; P=0.002). CONCLUSIONS: The risk of disease progression was higher among patients with MDS in whom persistent disease-associated mutations were detected in the bone marrow 30 days after transplantation than among those in whom these mutations were not detected. (Funded by the Leukemia and Lymphoma Society and others.).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mutação , Síndromes Mielodisplásicas/genética , Adulto , Exame de Medula Óssea , Análise Mutacional de DNA , Progressão da Doença , Intervalo Livre de Doença , Humanos , Leucemia Mieloide Aguda/genética , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Pele/patologia , Análise de Sobrevida , Condicionamento Pré-Transplante , Transplante Homólogo
8.
Nature ; 518(7540): 552-555, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25487151

RESUMO

Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.


Assuntos
Linhagem da Célula/genética , Genes p53/genética , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/genética , Mutação/genética , Alelos , Animais , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Células Clonais , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Etilnitrosoureia/farmacologia , Evolução Molecular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Heterozigoto , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Genéticos , Mutação/efeitos dos fármacos
9.
N Engl J Med ; 375(21): 2023-2036, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27959731

RESUMO

BACKGROUND: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS: Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS: Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Azacitidina/análogos & derivados , Medula Óssea/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , 5-Metilcitosina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/efeitos adversos , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Biomarcadores Tumorais/análise , Medula Óssea/química , Decitabina , Exoma , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida
11.
Blood ; 127(7): 893-7, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26631115

RESUMO

There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Mutação , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Recidiva
12.
Nature ; 481(7382): 506-10, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237025

RESUMO

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Assuntos
Evolução Clonal/genética , Genoma Humano/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Dano ao DNA/efeitos dos fármacos , Análise Mutacional de DNA , Genes Neoplásicos/genética , Genoma Humano/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Recidiva , Reprodutibilidade dos Testes
13.
Blood ; 126(22): 2484-90, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26492932

RESUMO

Familial clustering of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) can be caused by inherited factors. We screened 59 individuals from 17 families with 2 or more biological relatives with MDS/AML for variants in 12 genes with established roles in predisposition to MDS/AML, and identified a pathogenic germ line variant in 5 families (29%). Extending the screen with a panel of 264 genes that are recurrently mutated in de novo AML, we identified rare, nonsynonymous germ line variants in 4 genes, each segregating with MDS/AML in 2 families. Somatic mutations are required for progression to MDS/AML in these familial cases. Using a combination of targeted and exome sequencing of tumor and matched normal samples from 26 familial MDS/AML cases and asymptomatic carriers, we identified recurrent frameshift mutations in the cohesin-associated factor PDS5B, co-occurrence of somatic ASXL1 mutations with germ line GATA2 mutations, and recurrent mutations in other known MDS/AML drivers. Mutations in genes that are recurrently mutated in de novo AML were underrepresented in the familial MDS/AML cases, although the total number of somatic mutations per exome was the same. Lastly, clonal skewing of hematopoiesis was detected in 67% of young, asymptomatic RUNX1 carriers, providing a potential biomarker that could be used for surveillance in these high-risk families.


Assuntos
Exoma , Doenças Genéticas Inatas/genética , Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas de Neoplasias/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Criança , Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas de Ligação a DNA/genética , Feminino , Hematopoese/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Repressoras/genética , Fatores de Transcrição/genética
14.
PLoS Genet ; 10(7): e1004462, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010716

RESUMO

Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.


Assuntos
Evolução Clonal/genética , Células Clonais , Leucemia Mieloide Aguda/genética , Análise de Célula Única , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único
15.
N Engl J Med ; 368(22): 2059-74, 2013 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-23634996

RESUMO

BACKGROUND: Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS: We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS: AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS: We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Adulto , Ilhas de CpG , Metilação de DNA , Epigenômica , Feminino , Expressão Gênica , Fusão Gênica , Genoma Humano , Humanos , Leucemia Mieloide Aguda/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Nucleofosmina , Análise de Sequência de DNA/métodos
16.
N Engl J Med ; 366(12): 1090-8, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22417201

RESUMO

BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.).


Assuntos
Células da Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Adolescente , Adulto , Células Clonais , Genoma Humano , Humanos , Leucemia Mieloide Aguda/etiologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/complicações , Análise de Sequência com Séries de Oligonucleotídeos , Pele , Adulto Jovem
17.
JAMA ; 314(8): 811-22, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26305651

RESUMO

IMPORTANCE: Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES: To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS: Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES: Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES: Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS: Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5% of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. [table: see text]. CONCLUSIONS AND RELEVANCE: The detection of persistent leukemia-associated mutations in at least 5% of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML.


Assuntos
Quimioterapia de Indução , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea , Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Intervalo Livre de Doença , Feminino , Genoma Humano , Humanos , Idarubicina/administração & dosagem , Leucemia Mieloide Aguda/mortalidade , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Polimorfismo Genético , Prognóstico , RNA Mensageiro/análise , Recidiva , Análise de Sequência de RNA/métodos
19.
Nature ; 456(7218): 66-72, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987736

RESUMO

Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Leucemia Mieloide Aguda/genética , Estudos de Casos e Controles , Progressão da Doença , Perfilação da Expressão Gênica , Genômica , Humanos , Mutagênese Insercional , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva , Análise de Sequência de DNA , Deleção de Sequência , Pele/metabolismo
20.
N Engl J Med ; 363(25): 2424-33, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21067377

RESUMO

BACKGROUND: The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS: Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS: A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS: DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Leucemia Mieloide Aguda/genética , Mutação , Adulto , Metilação de DNA , DNA Metiltransferase 3A , Análise Mutacional de DNA/métodos , Feminino , Mutação da Fase de Leitura , Expressão Gênica , Humanos , Cariotipagem , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Técnicas de Amplificação de Ácido Nucleico , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa