Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry A ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092660

RESUMO

Flow cytometry is routinely used in the assessment of skeletal muscle progenitor cell (myoblast) populations. However, a full gating strategy, inclusive of difficult to interpret forward and side scatter data, which documents cytometric analysis of differentiated myoblasts (myotubes) has not been reported. Beyond changes in size and shape, there are substantial metabolic and protein changes in myotubes allowing for their potential identification within heterogenous cell suspensions. To establish the utility of flow cytometry for determination of myoblasts and myotubes, C2C12 murine cell populations were assessed for cell morphology and metabolic reprogramming. Laser scatter, both forward (FSC; size) and side (SSC; granularity), measured cell morphology, while mitochondrial mass, reactive oxygen species (ROS) generation and DNA content were quantified using the fluorescent probes, MitoTracker green, CM-H2 DCFDA and Vybrant DyeCycle, respectively. Immunophenotyping for myosin heavy chain (MyHC) was utilized to confirm myotube differentiation. Cellular viability was determined using Annexin V/propidium iodide dual labelling. Fluorescent microscopy was employed to visualize fluorescence and morphology. Myotube and myoblast populations were resolvable through non-intuitive interpretation of laser scatter-based morphology assessment and mitochondrial mass and activity assessment. Myotubes appeared to have similar sizes to the myoblasts based on laser scatter but exhibited greater mitochondrial mass (159%, p < 0.0001), ROS production (303%, p < 0.0001), DNA content (18%, p < 0.001) and expression of MyHC (147%, p < 0.001) compared to myoblasts. Myotube sub-populations contained a larger viable cluster of cells which were unable to be fractionated from myoblast populations and a smaller population cluster which likely contains apoptotic bodies. Imaging of differentiated myoblasts that had transited through the flow cytometer revealed the presence of intact, 'rolled-up' myotubes, which would alter laser scatter properties and potential transit through the laser beam. Our results indicate that myotubes can be analyzed successfully using flow cytometry. Increased mitochondrial mass, ROS and DNA content are key features that correlate with MyHC expression but due to myotubes 'rolling up' during flow cytometric analysis, laser scatter determination of size is not positively correlated; a phenomenon observed with some size determination particles and related to surface properties of said particles. We also note a greater heterogeneity of myotubes compared to myoblasts as evidenced by the 2 distinct sub-populations. We suggest that acoustic focussing may prove effective in identifying myotube sub populations compared to traditional hydrodynamic focussing.

2.
J Physiol ; 600(4): 903-919, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34505282

RESUMO

Maternal obesity is a global problem that increases the risk of short- and long-term adverse outcomes for mother and child, many of which are linked to gestational diabetes mellitus. Effective treatments are essential to prevent the transmission of poor metabolic health from mother to child. Metformin is an effective glucose lowering drug commonly used to treat gestational diabetes mellitus; however, its wider effects on maternal and fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin on maternal and feto-placental health. Metformin (300 mg kg-1  day-1 ) was given to obese females via the diet and was shown to achieve clinically relevant concentrations in maternal serum (1669 ± 568 nM in late pregnancy). Obese dams developed glucose intolerance during pregnancy and had reduced uterine artery compliance. Metformin treatment of obese dams improved maternal glucose tolerance, reduced maternal fat mass and restored uterine artery function. Placental efficiency was reduced in obese dams, with increased calcification and reduced labyrinthine area. Consequently, fetuses from obese dams weighed less (P < 0.001) at the end of gestation. Despite normalisation of maternal parameters, metformin did not correct placental structure or fetal growth restriction. Metformin levels were substantial in the placenta and fetal circulation (109.7 ± 125.4 nmol g-1 in the placenta and 2063 ± 2327 nM in fetal plasma). These findings reveal the distinct effects of metformin administration during pregnancy on mother and fetus and highlight the complex balance of risk vs. benefits that are weighed in obstetric medical treatments. KEY POINTS: Maternal obesity and gestational diabetes mellitus have detrimental short- and long-term effects for mother and child. Metformin is commonly used to treat gestational diabetes mellitus in many populations worldwide but the effects on fetus and placenta are unknown. In a mouse model of diet-induced obesity and glucose intolerance in pregnancy we show reduced uterine artery compliance, placental structural changes and reduced fetal growth. Metformin treatment improved maternal metabolic health and uterine artery compliance but did not rescue obesity-induced changes in the fetus or placenta. Metformin crossed the placenta into the fetal circulation and entered fetal tissue. Metformin has beneficial effects on maternal health beyond glycaemic control. However, despite improvements in maternal physiology, metformin did not prevent fetal growth restriction or placental ageing. The high uptake of metformin into the placental and fetal circulation highlights the potential for direct immediate effects of metformin on the fetus with possible long-term consequences postnatally.


Assuntos
Intolerância à Glucose , Metformina , Obesidade Materna , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Retardo do Crescimento Fetal , Intolerância à Glucose/metabolismo , Humanos , Transmissão Vertical de Doenças Infecciosas , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Placenta/metabolismo , Gravidez
3.
Neurochem Res ; 46(1): 131-139, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32306167

RESUMO

Organophosphate (OP) compounds are widely used as pesticides and herbicides and exposure to these compounds has been associated with both chronic and acute forms of neurological dysfunction including cognitive impairment, neurophysiological problems and cerebral ataxia with evidence of mitochondrial impairment being associated with this toxicity. In view of the potential mitochondrial impairment, the present study aimed to investigate the effect of exposure to commonly used OPs, dichlorvos, methyl-parathion (parathion) and chloropyrifos (CPF) on the cellular level of the mitochondrial electron transport chain (ETC) electron carrier, coenzyme Q10 (CoQ10) in human neuroblastoma SH-SY5Y cells. The effect of a perturbation in CoQ10 status was also evaluated on mitochondrial function and cell viability. A significant decreased (P < 0.0001) in neuronal cell viability was observed following treatment with all three OPs (100 µM), with dichlorvos appearing to be the most toxic to cells and causing an 80% loss of viability. OP treatment also resulted in a significant diminution in cellular CoQ10 status, with levels of this isoprenoid being decreased by 72% (P < 0.0001), 62% (P < 0.0005) and 43% (P < 0.005) of control levels following treatment with dichlorvos, parathion and CPF (50 µM), respectively. OP exposure was also found to affect the activities of the mitochondrial enzymes, citrate synthase (CS) and mitochondrial electron transport chain (ETC) complex II+III. Dichlorvos and CPF (50 µM) treatment significantly decreased CS activity by 38% (P < 0.0001) and 35% (P < 0.0005), respectively compared to control levels in addition to causing a 54% and 57% (P < 0.0001) reduction in complex II+III activity, respectively. Interestingly, although CoQ10 supplementation (5 µM) was able to restore cellular CoQ10 status and CS activity to control levels following OP treatment, complex II+III activity was only restored to control levels in neuronal cells exposed to dichlorvos (50 µM). However, post supplementation with CoQ10, complex II+III activity significantly increased by 33% (P < 0.0005), 25% (P < 0.005) and 35% (P < 0.0001) in dichlorvos, parathion and CPF (100 µM) treated cells respectively compared to non-CoQ10 supplemented cells. In conclusion, the results of this study have indicated evidence of neuronal cell CoQ10 deficiency with associated mitochondrial dysfunction following OP exposure. Although CoQ10 supplementation was able to ameliorate OP induced deficiencies in CS activity, ETC complex II+III activity appeared partially refractory to this treatment. Accordingly, these results indicate the therapeutic potential of CoQ10 supplementation in the treatment of OP poisoning. However, higher doses may be required to engender therapeutic efficacy.


Assuntos
Clorpirifos/toxicidade , Diclorvós/toxicidade , Inseticidas/toxicidade , Metil Paration/toxicidade , Neurônios/efeitos dos fármacos , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Ubiquinona/metabolismo , Ubiquinona/farmacologia
4.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933108

RESUMO

Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.


Assuntos
Ataxia/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Antioxidantes/metabolismo , Humanos , Inflamação/metabolismo , Ubiquinona/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266298

RESUMO

Methylmalonic acidemia is an inborn metabolic disease of propionate catabolism, biochemically characterized by accumulation of methylmalonic acid (MMA) to millimolar concentrations in tissues and body fluids. However, MMA's role in the pathophysiology of the disorder and its status as a "toxic intermediate" is unclear, despite evidence for its ability to compromise antioxidant defenses and induce mitochondrial dysfunction. Coenzyme Q10 (CoQ10) is a prominent electron carrier in the mitochondrial respiratory chain (MRC) and a lipid-soluble antioxidant which has been reported to be deficient in patient-derived fibroblasts and renal tissue from an animal model of the disease. However, at present, it is uncertain which factors are responsible for inducing this CoQ10 deficiency or the effect of this deficit in CoQ10 status on mitochondrial function. Therefore, in this study, we investigated the potential of MMA, the principal metabolite that accumulates in methylmalonic acidemia, to induce a cellular CoQ10 deficiency. In view of the severe neurological presentation of patients with this condition, human neuroblastoma SH-SY5Y cells were used as a neuronal cell model for this investigation. Following treatment with pathological concentrations of MMA (>0.5 mM), we found a significant (p = 0.0087) ~75% reduction in neuronal cell CoQ10 status together with a significant (p = 0.0099) decrease in MRC complex II-III activity at higher concentrations (>2 mM). The deficits in neuronal CoQ10 status and MRC complex II-III activity were associated with a loss of cell viability. However, no significant impairment of mitochondrial membrane potential (ΔΨm) was detectable. These findings indicate the potential of pathological concentrations of MMA to induce a neuronal cell CoQ10 deficiency with an associated loss of MRC complex II-III activity. However, in the absence of an impairment of ΔΨm, the contribution this potential deficit in cellular CoQ10 status makes towards the disease pathophysiology methylmalonic acidemia has yet to be fully elucidated.


Assuntos
Ácido Metilmalônico/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Transporte de Elétrons/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ubiquinona/metabolismo
6.
Methods Mol Biol ; 2511: 355-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35838974

RESUMO

Coenzyme Q10 (CoQ10) plays an essential electron carrier role in the mitochondrial electron transfer chain (ETC) as well as being a potent antioxidant and influencing inflammatory mediators. In view of these functions, the reason why certain individuals may be more susceptible to the severe disease or long-term complications (long COVID) of COVID-19 infection may be associated with an underlying deficit in cellular CoQ10 status. Thus, our group has outlined an analytical method for the determination of cellular CoQ10 status using HPLC linked UV detection at 275 nm. This method has been utilized in patient tissue samples to investigate evidence of a CoQ10 deficiency and thus may have potential in determining the possible susceptibility of individuals to severe disease associated with COVID-19 infection or to long COVID.


Assuntos
COVID-19 , Ubiquinona , COVID-19/complicações , COVID-19/diagnóstico , Humanos , Doenças Mitocondriais , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo , Síndrome de COVID-19 Pós-Aguda
7.
NPJ Genom Med ; 7(1): 60, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266294

RESUMO

The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.

8.
Antioxidants (Basel) ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064686

RESUMO

Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.

9.
Antioxidants (Basel) ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052506

RESUMO

The ageing brain is characterised by changes at the physical, histological, biochemical and physiological levels. This ageing process is associated with an increased risk of developing a number of neurological disorders, notably Alzheimer's disease and Parkinson's disease. There is evidence that mitochondrial dysfunction and oxidative stress play a key role in the pathogenesis of such disorders. In this article, we review the potential therapeutic role in these age-related neurological disorders of supplementary coenzyme Q10, a vitamin-like substance of vital importance for normal mitochondrial function and as an antioxidant. This review is concerned primarily with studies in humans rather than in vitro studies or studies in animal models of neurological disease. In particular, the reasons why the outcomes of clinical trials supplementing coenzyme Q10 in these neurological disorders is discussed.

10.
J Equine Vet Sci ; 96: 103303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349408

RESUMO

Although coenzyme Q10 (CoQ10) serves as an antioxidant and energy source for spermatozoa when added to stallion semen before cooling or freezing, the effects of feeding CoQ10 on semen quality have not been studied. We assessed the effects of daily oral ingestion of CoQ10-ubiquinol by stallions on their plasma CoQ10 concentrations and semen quality. Seven mature Andalusian stallions ate 1g ubiquinol/day for 4 weeks followed by a 4-week washout period. Four horses initially completed an additional 4-week control period without ubiquinol. Blood was sampled weekly for determination of plasma CoQ10 concentrations. Ejaculates were collected every two weeks and assessed for total motility (TM), progressive motility (PM), and viability (V) after cooling for 24hours (T1), immediate cryopreservation (T2), and cryopreservation after 24hours cooling (T3). Ingesting ubiquinol resulted in an increase in plasma CoQ10 concentration (P < .001). Two weeks of CoQ10-ubiquinol resulted in improved V with all treatments (T1: P = .007; T2: P = .05; T3: P = .01) and PM with T3 (P = .04). In five stallions, TM and PM were also improved for T1 (P = .01 and P = .02, respectively) and TM increased with T2 (P = .03). Overall, semen quality parameters increased within the first 2 weeks of supplementation, plateaued at the end of the 4-week supplementation period and persisted after discontinuing ubiquinol until the end of the sampling period (8 weeks). Feeding 1 g CoQ10-ubiquinol for 4 weeks to breeding stallions improved semen quality after cooling and freezing in 5 of 7 stallions. This could be important for improving reproductive efficiency in stallions.


Assuntos
Análise do Sêmen , Preservação do Sêmen , Animais , Cavalos , Masculino , Plasma , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária , Ubiquinona/análogos & derivados
11.
J Clin Med ; 9(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575494

RESUMO

Coenzyme Q10 (CoQ10) deficiency currently represents the only treatable mitochondrial disorder, however, little is known about how it may affect other organelles. The lysosome has been found to have a large concentration of CoQ10 localised at its membrane; additionally, it has been suggested that it plays a role in the normal acidification of the lysosomal lumen. As a result, in this study we assessed the effect of CoQ10 deficiency on lysosomal acidification. In order to investigate this, a neuronal cell model of CoQ10 deficiency was established via the treatment of SH-SY5Y cells with para-aminobenzoic acid (PABA). This method works through the competitive inhibition of the CoQ10 biosynthetic pathway enzyme, CoQ2. A single 1 mM (5 days) treatment with PABA resulted in a decrease of up to 58% in cellular CoQ10 (p < 0.05). It was found that this resulted in a significant decrease in fluorescence of both the LysoSensor (23%) and LysoTracker (35%) probes used to measure lysosomal pH (p < 0.05). It was found that subsequent treatment with CoQ10 (5 µM, 3 days) was able to restore cellular CoQ10 concentration (p < 0.005), which was associated with an increase in fluorescence from both probes to around 90% of controls (p < 0.05), suggesting a restoration of lysosomal pH. This study provides insights into the association between lysosomal pH and cellular CoQ10 status and the possibility that a deficit in the status of this isoprenoid may result in an impairment of lysosomal acidification.

12.
J Clin Med ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796538

RESUMO

Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa