Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Genet ; 140(3): 505-528, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32902719

RESUMO

While the Arabian population has a high prevalence of metabolic disorders, it has not been included in global studies that identify genetic risk loci for metabolic traits. Determining the transferability of such largely Euro-centric established risk loci is essential to transfer the research tools/resources, and drug targets generated by global studies to a broad range of ethnic populations. Further, consideration of populations such as Arabs, that are characterized by consanguinity and a high level of inbreeding, can lead to identification of novel risk loci. We imputed published GWAS data from two Kuwaiti Arab cohorts (n = 1434 and 1298) to the 1000 Genomes Project haplotypes and performed meta-analysis for associations with 13 metabolic traits. We compared the observed association signals with those established for metabolic traits. Our study highlighted 70 variants from 9 different genes, some of which have established links to metabolic disorders. By relaxing the genome-wide significance threshold, we identified 'novel' risk variants from 11 genes for metabolic traits. Many novel risk variant association signals were observed at or borderline to genome-wide significance. Furthermore, 349 previously established variants from 187 genes were validated in our study. Pleiotropic effect of risk variants on multiple metabolic traits were observed. Fine-mapping illuminated rs7838666/CSMD1 rs1864163/CETP and rs112861901/[INTS10,LPL] as candidate causal variants influencing fasting plasma glucose and high-density lipoprotein levels. Computational functional analysis identified a variety of gene regulatory signals around several variants. This study enlarges the population ancestry diversity of available GWAS and elucidates new variants in an ethnic group burdened with metabolic disorders.


Assuntos
Árabes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Metabólicas/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
2.
J Lipid Res ; 59(10): 1951-1966, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108155

RESUMO

Abnormal blood lipid levels are influenced by genetic and lifestyle/dietary factors. Although many genetic variants associated with blood lipid traits have been identified in Europeans, similar data in Middle Eastern populations are limited. We performed a genome-wide association study with Arab individuals (discovery cohort: 1,353; replication cohort: 1,176) from Kuwait to identify possible associations of genetic variants with high lipid levels. We used Illumina HumanOmniExpress BeadChip and candidate SNP genotyping in the discovery and replication phases, respectively. For association tests, we used genetic models that were based on additive and recessive modes of inheritance. High triglycerides (TGs) were recessively associated with six risk variants (rs1002487/RPS6KA1, rs11805972/LAD1) rs7761746/Or5v1, rs39745/CTTNBP2-LSM8, rs2934952/PGAP3, and rs9626773/RP11-191L9.4-CERK) at genome-wide significance (P  6.12E-09), and another six variants (rs10873925/ST6GALNAC5, rs4663379/SPP2-ARL4C, rs10033119/NPY1R, rs17709449/LINC00911-FLRT2, rs11654954/CDK12-NEUROD2, and rs9972882/STARD3) were associated at borderline significance (P  5.0E-08). High TG was also additively associated with rs11654954. All of the 12 identified markers are novel and are harbored in runs of homozygosity. Literature evidence supports the involvement of these gene loci in lipid-related processes. This study in an Arab population augments international efforts to identify genetic regulation of lipid traits.


Assuntos
Árabes/genética , Variação Genética , Estudo de Associação Genômica Ampla , Triglicerídeos/sangue , Biomarcadores/metabolismo , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Jejum/sangue , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença/genética , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Fenótipo
3.
BMC Genomics ; 16: 92, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25765185

RESUMO

BACKGROUND: The 1000 Genome project paved the way for sequencing diverse human populations. New genome projects are being established to sequence underrepresented populations helping in understanding human genetic diversity. The Kuwait Genome Project an initiative to sequence individual genomes from the three subgroups of Kuwaiti population namely, Saudi Arabian tribe; "tent-dwelling" Bedouin; and Persian, attributing their ancestry to different regions in Arabian Peninsula and to modern-day Iran (West Asia). These subgroups were in line with settlement history and are confirmed by genetic studies. In this work, we report whole genome sequence of a Kuwaiti native from Persian subgroup at >37X coverage. RESULTS: We document 3,573,824 SNPs, 404,090 insertions/deletions, and 11,138 structural variations. Out of the reported SNPs and indels, 85,939 are novel. We identify 295 'loss-of-function' and 2,314 'deleterious' coding variants, some of which carry homozygous genotypes in the sequenced genome; the associated phenotypes include pharmacogenomic traits such as greater triglyceride lowering ability with fenofibrate treatment, and requirement of high warfarin dosage to elicit anticoagulation response. 6,328 non-coding SNPs associate with 811 phenotype traits: in congruence with medical history of the participant for Type 2 diabetes and ß-Thalassemia, and of participant's family for migraine, 72 (of 159 known) Type 2 diabetes, 3 (of 4) ß-Thalassemia, and 76 (of 169) migraine variants are seen in the genome. Intergenome comparisons based on shared disease-causing variants, positions the sequenced genome between Asian and European genomes in congruence with geographical location of the region. On comparison, bead arrays perform better than sequencing platforms in correctly calling genotypes in low-coverage sequenced genome regions however in the event of novel SNP or indel near genotype calling position can lead to false calls using bead arrays. CONCLUSIONS: We report, for the first time, reference genome resource for the population of Persian ancestry. The resource provides a starting point for designing large-scale genetic studies in Peninsula including Kuwait, and Persian population. Such efforts on populations under-represented in global genome variation surveys help augment current knowledge on human genome diversity.


Assuntos
Diabetes Mellitus Tipo 2/genética , Transtornos de Enxaqueca/genética , Talassemia beta/genética , Sequência de Bases , Variação Genética , Projeto Genoma Humano , Humanos , Mutação INDEL/genética , Irã (Geográfico) , Kuweit , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Arábia Saudita , Análise de Sequência de DNA , População Branca/genética
4.
Front Endocrinol (Lausanne) ; 14: 1185956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859980

RESUMO

The Wolfram syndrome 1 gene (WFS1) is the main causative locus for Wolfram syndrome, an inherited condition characterized by childhood-onset diabetes mellitus, optic atrophy, and deafness. Global genome-wide association studies have listed at least 19 WFS1 variants that are associated with type 2 diabetes (T2D) and metabolic traits. It has been suggested that miRNA binding sites on WFS1 play a critical role in the regulation of the wolframin protein, and loss of WFS1 function may lead to the pathogenesis of diabetes. In the Hungarian population, it was observed that a 3' UTR variant from WFS1, namely rs1046322, influenced the affinity of miR-668 to WFS1 mRNA, and showed a strong association with T2D. In this study, we genotyped a large cohort of 2067 individuals of different ethnicities residing in Kuwait for the WFS1 rs1046322 polymorphism. The cohort included 362 Southeast Asians (SEA), 1045 Arabs, and 660 South Asians (SA). Upon performing genetic association tests, we observed significant associations between the rs1046322 SNP and obesity traits in the SEA population, but not in the Arab or SA populations. The associated traits in SEA cohort were body mass index, BMI (ß=1.562, P-value=0.0035, Pemp=0.0072), waist circumference, WC (ß=3.163, P-value=0.0197, Pemp=0.0388) and triglyceride, TGL (ß=0.224, P-value=0.0340). The association with BMI remained statistically significant even after multiple testing correction. Among the SEA individuals, carriers of the effect allele at the SNP had significantly higher BMI [mean of 27.63 (3.6) Kg/m2], WC [mean of 89.9 (8.1) cm], and TGL levels [mean of 1.672 (0.8) mmol/l] than non-carriers of the effect allele. Our findings suggest a role for WFS1 in obesity, which is a risk factor for diabetes. The study also emphasizes the significant role the ethnic background may play in determining the effect of genetic variants on susceptibility to metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Obesidade , Síndrome de Wolfram , Criança , Humanos , Sítios de Ligação/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Obesidade/epidemiologia , Obesidade/genética , População do Sudeste Asiático , Síndrome de Wolfram/epidemiologia , Síndrome de Wolfram/genética
5.
Cancer Biomark ; 38(4): 465-487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073377

RESUMO

AIM: Esophageal Squamous Cell Carcinoma (ESCC) is a histological subtype of esophageal cancer that begins in the squamous cells in the esophagus. In only 19% of the ESCC-diagnosed patients, a five-year survival rate has been seen. This necessitates the identification of high-confidence biomarkers for early diagnosis, prognosis, and potential therapeutic targets for the mitigation of ESCC. METHOD: We performed a meta-analysis of 10 mRNA datasets and identified consistently perturbed genes across the studies. Then, integrated with ESCC ATLAS to segregate 'core' genes to identify consequences of primary gene perturbation events leading to gene-gene interactions and dysregulated molecular signaling pathways. Further, by integrating with toxicogenomics data, inferences were drawn for gene interaction with environmental exposures, trace elements, chemical carcinogens, and drug chemicals. We also deduce the clinical outcomes of candidate genes based on survival analysis using the ESCC related dataset in The Cancer Genome Atlas. RESULT: We identified 237 known and 18 novel perturbed candidate genes. Desmoglein 1 (DSG1) is one such gene that we found significantly downregulated (Fold Change =-1.89, p-value = 8.2e-06) in ESCC across six different datasets. Further, we identified 31 'core' genes (that either harbor genetic variants or are regulated by epigenetic modifications) and found regulating key biological pathways via adjoining genes in gene-gene interaction networks. Functional enrichment analysis showed dysregulated biological processes and pathways including "Extracellular matrix", "Collagen trimmer" and "HPV infection" are significantly overrepresented in our candidate genes. Based on the toxicogenomic inferences from Comparative Toxicogenomics Database we report the key genes that interacted with risk factors such as tobacco smoking, zinc, nitroso benzylmethylamine, and drug chemicals such as cisplatin, Fluorouracil, and Mitomycin in relation to ESCC. We also point to the STC2 gene that shows a high risk for mortality in ESCC patients. CONCLUSION: We identified novel perturbed genes in relation to ESCC and explored their interaction network. DSG1 is one such gene, its association with microbiota and a clinical presentation seen commonly with ESCC hints that it is a good candidate for early diagnostic marker. Besides, in this study we highlight candidate genes and their molecular connections to risk factors, biological pathways, drug chemicals, and the survival probability of ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Desmogleína 1/genética , Desmogleína 1/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Biologia Computacional , Genômica , Prognóstico , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
6.
Infect Agent Cancer ; 18(1): 47, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641095

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS: This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS: We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS: Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION: This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.

7.
Sci Rep ; 13(1): 14978, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696853

RESUMO

Type 1 diabetes (T1D) is characterized by the progressive destruction of pancreatic ß-cells, leading to insulin deficiency and lifelong dependency on exogenous insulin. Higher estimates of heritability rates in monozygotic twins, followed by dizygotic twins and sib-pairs, indicate the role of genetics in the pathogenesis of T1D. The incidence and prevalence of T1D are alarmingly high in Kuwait. Consanguineous marriages account for 50-70% of all marriages in Kuwait, leading to an excessive burden of recessive allele enrichment and clustering of familial disorders. Thus, genetic studies from this Arab region are expected to lead to the identification of novel gene loci for T1D. In this study, we performed linkage analyses to identify the recurrent genetic variants segregating in high-risk Kuwaiti families with T1D. We studied 18 unrelated Kuwaiti native T1D families using whole exome sequencing data from 86 individuals, of whom 37 were diagnosed with T1D. The study identified three potential loci with a LOD score of ≥ 3, spanning across four candidate genes, namely SLC17A1 (rs1165196:pT269I), SLC17A3 (rs942379: p.S370S), TATDN2 (rs394558:p.V256I), and TMEM131L (rs6848033:p.R190R). Upon examination of missense variants from these genes in the familial T1D dataset, we observed a significantly increased enrichment of the genotype homozygous for the minor allele at SLC17A3 rs56027330_p.G279R accounting for 16.2% in affected children from 6 unrelated Kuwaiti T1D families compared to 1000 genomes Phase 3 data (0.9%). Data from the NephQTL database revealed that the rs1165196, rs942379, rs394558, and rs56027330 SNPs exhibited genotype-based differential expression in either glomerular or tubular tissues. Data from the GTEx database revealed rs942379 and rs394558 as QTL variants altering the expression of TRIM38 and IRAK2 respectively. Global genome-wide association studies indicated that SLC17A1 rs1165196 and other variants from SLC17A3 are associated with uric acid concentrations and gout. Further evidence from the T1D Knowledge portal supported the role of shortlisted variants in T1D pathogenesis and urate metabolism. Our study suggests the involvement of SLC17A1, SLC17A3, TATDN2, and TMEM131L genes in familial T1D in Kuwait. An enrichment selection of genotype homozygous for the minor allele is observed at SLC17A3 rs56027330_p.G279R variant in affected members of Kuwaiti T1D families. Future studies may focus on replicating the findings in a larger T1D cohort and delineate the mechanistic details of the impact of these novel candidate genes on the pathophysiology of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Diabetes Mellitus Tipo 1/genética , Kuweit/epidemiologia , Sequenciamento do Exoma , Estudo de Associação Genômica Ampla , Insulina , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I
8.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947641

RESUMO

BACKGROUND: Angiopoietin-like protein 8 (ANGPTL8) is known to regulate lipid metabolism and inflammation. It interacts with ANGPTL3 and ANGPTL4 to regulate lipoprotein lipase (LPL) activity and with IKK to modulate NF-κB activity. Further, a single nucleotide polymorphism (SNP) leading to the ANGPTL8 R59W variant associates with reduced low-density lipoprotein/high-density lipoprotein (LDL/HDL) and increased fasting blood glucose (FBG) in Hispanic and Arab individuals, respectively. In this study, we investigate the impact of the R59W variant on the inflammatory activity of ANGPTL8. METHODS: The ANGPTL8 R59W variant was genotyped in a discovery cohort of 867 Arab individuals from Kuwait. Plasma levels of ANGPTL8 and inflammatory markers were measured and tested for associations with the genotype; the associations were tested for replication in an independent cohort of 278 Arab individuals. Impact of the ANGPTL8 R59W variant on NF-κB activity was examined using approaches including overexpression, luciferase assay, and structural modeling of binding dynamics. RESULTS: The ANGPTL8 R59W variant was associated with increased circulatory levels of tumor necrosis factor alpha (TNFα) and interleukin 7 (IL7). Our in vitro studies using HepG2 cells revealed an increased phosphorylation of key inflammatory proteins of the NF-κB pathway in individuals with the R59W variant as compared to those with the wild type, and TNFα stimulation further elevated it. This finding was substantiated by increased luciferase activity of NF-κB p65 with the R59W variant. Modeled structural and binding variation due to R59W change in ANGPTL8 agreed with the observed increase in NF-κB activity. CONCLUSION: ANGPTL8 R59W is associated with increased circulatory TNFα, IL7, and NF-κB p65 activity. Weak transient binding of the ANGPTL8 R59W variant explains its regulatory role on the NF-κB pathway and inflammation.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Hormônios Peptídicos , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Interleucina-7 , Inflamação/genética , Transdução de Sinais , Luciferases/metabolismo , Proteína 3 Semelhante a Angiopoietina , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
9.
Front Pharmacol ; 13: 891838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003520

RESUMO

Human leukocyte antigen (HLA) proteins are present at the cellular surface of antigen-presenting cells and play a crucial role in the adaptive immune response. Class I genes, specifically certain HLA-B alleles, are associated with adverse drug reactions (ADRs) and are used as pharmacogenetic markers. Although ADRs are a common causes of hospitalization and mortality, the data on the prevalence of HLA-B pharmacogenetics markers in Arab countries are scarce. In this study, we investigated the frequencies of major HLA-B pharmacogenomics markers in the Qatari population. Next-generation sequencing data from 1,098 Qatari individuals were employed for HLA-B typing using HLA-HD version 1.4.0 and IPD-IMGT/HLA database. In addition, HLA-B pharmacogenetics markers were obtained from the HLA Adverse Drug Reaction Database. In total, 469 major HLA-B pharmacogenetic markers were identified, with HLA-B*51:01 being the most frequent pharmacogenetic marker (26.67%) in the Qatari population. Moreover, HLA-B*51:01 is associated with phenytoin- and clindamycin-induced ADRs. The second most frequent pharmacogenetic marker was the HLA-B*58:01 allele (6.56%), which is associated with allopurinol-induced ADRs. The third most frequent pharmacogenetic marker was the HLA-B*44:03 allele, which is associated with phenytoin-induced ADRs. The establishment of a pharmacogenetics screening program in Qatar for cost effective interventions aimed at preventing drug-induced hypersensitivity can be aided by the highly prevalent HLA-B pharmacogenetic markers detected here.

10.
Sci Rep ; 12(1): 11045, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773317

RESUMO

There has recently been a growing interest in examining the role of epigenetic modifications, such as DNA methylation, in the etiology of type 1 diabetes (T1D). This study aimed to delineate differences in methylation patterns between T1D-affected and healthy individuals by examining the genome-wide methylation of individuals from three Arab families from Kuwait with T1D-affected mono-/dizygotic twins and non-twinned siblings. Bisulfite sequencing of DNA from the peripheral blood of the affected and healthy individuals from each of the three families was performed. Methylation profiles of the affected individuals were compared to those of the healthy individuals Principal component analysis on the observed methylation profiling based on base-pair resolution clustered the T1D-affected twins together family-wide. The sites/regions that were differentially methylated between the T1D and healthy samples harbored 84 genes, of which 18 were known to be differentially methylated in T1D individuals compared to healthy individuals in publicly available gene expression data resources. We further validated two of the 18 genes-namely ICA1 and DRAM1 that were hypermethylated in T1D samples compared to healthy samples-for upregulation in T1D samples from an extended study cohort of familial T1D. The study confirmed that the ICA1 and DRAM1 genes are differentially expressed in T1D samples compared to healthy samples.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhas de CpG/genética , Metilação de DNA , Diabetes Mellitus Tipo 1/genética , Epigênese Genética , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de DNA
11.
Front Genet ; 13: 1034892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338969

RESUMO

Background: Animal and cell model studies have implicated CAV1 in the pathophysiology of metabolic disorders. Our previous studies demonstrated a potential association of CAV1 rs1997623 C/A variant with pediatric metabolic syndrome (MetS) in Arab children. In the present study, we evaluate whether the CAV1 variant associates with MetS Arab adults as well. The association signal is further examined for ancestry-specific variation by considering cohorts of other ethnicities. Method: The CAV1 rs1997623 was genotyped in three cohorts of Arab (n = 479), South Asian (n = 660), and South East Asian (n = 362) ethnic adults from Kuwait. MetS status of the individuals was diagnosed using the IDF criteria (presence of central obesity and at least two abnormalities out of: elevated TG, low HDL, hypertension, or T2D). The quantitative measure of MetS was calculated as siMS = 2 × WC/Height + FBG/5.6 + TG/1.7 + SBP/130-HDL/1.02 for males or HDL/1.28 for females. Allelic associations with quantitative and dichotomous MetS traits were assessed using linear and logistic regression models adjusted for age and sex. In addition, empirical p-values (P emp ) were generated using max(T) permutation procedure based on 10,000 permutations. Results: The CAV1 variant was significantly associated with MetS status (OR = 1.811 [1.25-2.61]; p-value = 0.0015; P emp = 0.0013) and with siMS (Effect size = 0.206; p-value = 0.0035; P emp = 0.0028) in the cohort of Arab individuals. The association was weak and insignificant in the South Asian and South East Asian cohorts (OR = 1.19 and 1.11; p-values = 0.25 and 0.67, respectively). Conclusion: The reported association of CAV1 rs1997623 C/A with MetS in Arab pediatric population is now demonstrated in an adult Arab cohort as well. The weak association signal seen in the Asian cohorts lead us to propose a certain extent of ethnic-specificity in CAV1 rs1997623 association with MetS.

12.
Eur J Hum Genet ; 30(3): 307-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33753911

RESUMO

Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.


Assuntos
Heterogeneidade Genética , Polimorfismo de Nucleotídeo Único , Consanguinidade , Variação Genética , Genética Populacional , Haplótipos , Humanos , Kuweit
13.
Genes (Basel) ; 13(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35885984

RESUMO

N-Acetylgalactosaminyltransferase 2 (GALNT2) is associated with serum lipid levels, insulin resistance, and adipogenesis. Additionally, angiopoietin-like (ANGPTL) proteins have emerged as regulators of lipoprotein lipase and lipid metabolism. In this study, we evaluated the association between GALNT2 rs4846914 variant, known for its association with lipid levels in European cohorts, with plasma levels of ANGPTL proteins, apolipoproteins, lipids, and obesity traits in individuals of Arab ethnicity. GALNT2 rs4846914 was genotyped in a cohort of 278 Arab individuals from Kuwait. Plasma levels of ANGPTL3 and ANGPTL8 were measured by ELISA and apolipoproteins by Luminex multiplexing assay. Allele-based association tests were performed with Bonferroni-corrected p-value thresholds. The GALNT2 rs4846914_G allele was associated with increased ANGPTL3 (p-values ≤ 0.05) but not with ANGPTL8 plasma levels. The allele was associated significantly with higher BMI and weight (p-values < 0.003), increased ApoC1 levels (p-values ≤ 0.006), and reduced HDL levels (p-values ≤ 0.05). Individuals carrying the GG genotype showed significantly decreased HDL and increased BMI, WC, ApoC1, and TG. Interactions exist between (AG+GG) genotypes and measures of percentage body fat, ApoA1A, ApoC1, and ApoB48-mediated HDL levels. GALNT2 is confirmed further as a potential link connecting lipid metabolism and obesity and has the potential to be a drug target for treating obesity and dyslipidemia.


Assuntos
N-Acetilgalactosaminiltransferases/genética , Hormônios Peptídicos , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Humanos , Lipídeos/genética , Obesidade/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
14.
J Pers Med ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809530

RESUMO

With the tremendous advancements in genome sequencing technology in the field of pharmacogenomics, data have to be made accessible to be more efficiently utilized by broader clinical disciplines. Physicians who require the drug-genome interactome information, have been challenged by the complicated pharmacogenomic star-based classification system. We present here an end-to-end web-based pharmacogenomics tool, PharmaKU, which has a comprehensive easy-to-use interface. PharmaKU can help to overcome several hurdles posed by previous pharmacogenomics tools, including input in hg38 format only, while hg19/GRCh37 is now the most popular reference genome assembly among clinicians and geneticists, as well as the lack of clinical recommendations and other pertinent dosage-related information. This tool extracts genetic variants from nine well-annotated pharmacogenes (for which diplotype to phenotype information is available) from whole genome variant files and uses Stargazer software to assign diplotypes and apply prescribing recommendations from pharmacogenomic resources. The tool is wrapped with a user-friendly web interface, which allows for choosing hg19 or hg38 as the reference genome version and reports results as a comprehensive PDF document. PharmaKU is anticipated to enable bench to bedside implementation of pharmacogenomics knowledge by bringing precision medicine closer to a clinical reality.

15.
Genes (Basel) ; 12(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681031

RESUMO

The Arabian Peninsula, located at the nexus of Africa, Europe, and Asia, was implicated in early human migration. The Arab population is characterized by consanguinity and endogamy leading to inbreeding. Global genome-wide association (GWA) studies on metabolic traits under-represent the Arab population. Replicability of GWA-identified association signals in the Arab population has not been satisfactorily explored. It is important to assess how well GWA-identified findings generalize if their clinical interpretations are to benefit the target population. Our recent study from Kuwait, which performed genome-wide imputation and meta-analysis, observed 304 (from 151 genes) of the 4746 GWA-identified metabolic risk variants replicable in the Arab population. A recent large GWA study from Qatar found replication of 30 GWA-identified lipid risk variants. These complementing studies from the Peninsula increase the confidence in generalizing metabolic risk loci to the Arab population. However, both the studies reported a low extent of transferability. In this review, we examine the observed low transferability in the context of differences in environment, genetic correlations (allele frequencies, linkage disequilibrium, effect sizes, and heritability), and phenotype variance. We emphasize the need for large-scale GWA studies on deeply phenotyped cohorts of at least 20,000 Arab individuals. The review further presents GWA-identified metabolic risk variants generalizable to the Arab population.


Assuntos
Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla , Doenças Metabólicas/genética , Árabes/genética , Interação Gene-Ambiente , Humanos , Kuweit/epidemiologia , Desequilíbrio de Ligação/genética , Metabolismo dos Lipídeos/genética , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/patologia , Catar/epidemiologia , Fatores de Risco
16.
Genes (Basel) ; 12(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067751

RESUMO

ANGPTL3 is an important regulator of lipid metabolism. Its inhibition in people with hypercholesteremia reduces plasma lipid levels dramatically. Genome-wide association studies have associated ANGPTL3 variants with lipid traits. Irisin, an exercise-modulated protein, has been associated with lipid metabolism. Intracellular accumulation of lipids impairs insulin action and contributes to metabolic disorders. In this study, we evaluate the impact of ANGPTL3 variants on levels of irisin and markers associated with lipid metabolism and insulin resistance. ANGPTL3 rs1748197 and rs12130333 variants were genotyped in a cohort of 278 Arab individuals from Kuwait. Levels of irisin and other metabolic markers were measured by ELISA. Significance of association signals was assessed using Bonferroni-corrected p-values and empirical p-values. The study variants were significantly associated with low levels of c-peptide and irisin. Levels of c-peptide and irisin were mediated by interaction between carrier genotypes (GA + AA) at rs1748197 and measures of IL13 and TG, respectively. While levels of c-peptide and IL13 were directly correlated in individuals with the reference genotype, they were inversely correlated in individuals with the carrier genotype. Irisin correlated positively with TG and was strong in individuals with carrier genotypes. These observations illustrate ANGPTL3 as a potential link connecting lipid metabolism, insulin resistance and cardioprotection.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Peptídeo C/sangue , Fibronectinas/sangue , Resistência à Insulina/genética , Polimorfismo de Nucleotídeo Único , Adulto , Proteína 3 Semelhante a Angiopoietina , Árabes/genética , Feminino , Heterozigoto , Humanos , Interleucina-13/sangue , Masculino , Pessoa de Meia-Idade
17.
PLoS One ; 16(5): e0251368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033650

RESUMO

COVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains' recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified, whereas samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. In addition, we structurally modelled the two most common mutations, Spike_D614G and Nsp12_P314L, which suggested that these linked mutations may enhance viral entry and replication, respectively. Overall, we propose that genomic recombination between different strains may contribute to SARS-CoV-2 virulence and COVID-19 severity and may present additional challenges for current treatment regimens and countermeasures. Furthermore, our study provides a possible explanation for the substantial second wave of COVID-19 presented with higher infection and death rates in many countries.


Assuntos
Recombinação Genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Virulência/fisiologia , COVID-19/patologia , COVID-19/virologia , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Análise de Componente Principal , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34305429

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

19.
Front Genet ; 12: 626260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659027

RESUMO

BACKGROUND/OBJECTIVES: Whole-exome sequencing is a valuable tool to determine genetic variations that are associated with rare and common health conditions. A limited number of studies demonstrated that mitochondrial DNA can be captured using whole-exome sequencing. Previous studies have suggested that mitochondrial DNA variants and haplogroup lineages are associated with obesity. Therefore, we investigated the role of mitochondrial variants and haplogroups contributing to the risk of obesity in Arabs in Kuwait using exome sequencing data. SUBJECTS/METHODS: Indirect mitochondrial genomes were extracted from exome sequencing data from 288 unrelated native Arab individuals from Kuwait. The cohort was divided into obese [body mass index (BMI) ≥ 30 kg/m2] and non-obese (BMI < 30 kg/m2) groups. Mitochondrial variants were identified, and haplogroups were classified and compared with other sequencing technologies. Statistical analysis was performed to determine associations and identify mitochondrial variants and haplogroups affecting obesity. RESULTS: Haplogroup R showed a protective effect on obesity [odds ratio (OR) = 0.311; P = 0.006], whereas haplogroup L individuals were at high risk of obesity (OR = 2.285; P = 0.046). Significant differences in mitochondrial variants between the obese and non-obese groups were mainly haplogroup-defining mutations and were involved in processes in energy generation. The majority of mitochondrial variants and haplogroups extracted from exome were in agreement with technical replica from Sanger and whole-genome sequencing. CONCLUSIONS: This is the first to utilize whole-exome data to extract entire mitochondrial haplogroups to study its association with obesity in an Arab population.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32733386

RESUMO

Melanocortin 4 receptor (MC4R), a notable component of the melanocortin system, regulates appetite, body weight, and energy homeostasis. Genome-wide association studies have identified several MC4R variants associated with adiposity; of these, rs17782313, which is associated with increased body mass index (BMI) and overeating behavior, is of particular interest. Another gene associated with increased adiposity in global genome-wide association studies is DNAJC27, a heat shock protein known to be elevated in obesity. The detailed mechanisms underlying the role of MC4R variants in the biological pathways underlying metabolic disorders are not well-understood. To address this, we assessed variations of rs17782313 in a cohort of 282 Arab individuals from Kuwait, who are deeply phenotyped for anthropometric and metabolic traits and various biomarkers, including DNAJC27. Association tests showed that the rs17782313_C allele was associated with BMI and DNAJC27 levels. Increased levels of DNAJC27 reduced the MC4R-mediated formation of cAMP in MC4R ACTOne stable cells. In conclusion, this study demonstrated an association between the rs17782313 variant near MC4R and increased BMI and DNAJC27 levels and established a link between increased DNAJC27 levels and lower cAMP levels. We propose that regulation of MC4R activity by DNAJC27 enhances appetite through its effect on cAMP, thereby regulating obesity.


Assuntos
Citocinas/sangue , Grelina/sangue , Proteínas de Choque Térmico HSP40/sangue , Hipertensão/epidemiologia , Nicotinamida Fosforribosiltransferase/sangue , Obesidade/epidemiologia , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/genética , Proteínas rab de Ligação ao GTP/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/patologia , Kuweit/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/genética , Obesidade/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa