RESUMO
The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.
Assuntos
Blastocisto/metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Blastocisto/citologia , Cromatina/genética , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Histonas/genética , Humanos , Camundongos , Fenótipo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMO
Higher order compaction of the eukaryotic genome is key to the regulation of all DNA-templated processes, including transcription. This tightly controlled process involves the formation of mononucleosomes, the fundamental unit of chromatin, packaged into higher order architectures in an H1 linker histone-dependent process. While much work has been done to delineate the precise mechanism of this event in vitro and in vivo, major gaps still exist, primarily due to a lack of molecular tools. Specifically, there has never been a successful purification and biochemical characterization of all human H1 variants. Here we present a robust method to purify H1 and illustrate its utility in the purification of all somatic variants and one germline variant. In addition, we performed a first ever side-by-side biochemical comparison, which revealed a gradient of nucleosome binding affinities and compaction capabilities. These data provide new insight into H1 redundancy and lay the groundwork for the mechanistic investigation of disease-driving mutations.
Assuntos
Histonas/isolamento & purificação , Engenharia de Proteínas/métodos , Proteínas Recombinantes/isolamento & purificação , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Nuclease do Micrococo/metabolismo , Nucleossomos/metabolismo , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genéticaRESUMO
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
RESUMO
8-oxoA, a major oxidation product of adenosine, is a mispairing, mutagenic lesion that arises in DNA and RNA when â¢OH radicals or one-electron oxidants attack the C8 adenine atom or polymerases misincorporate 8-oxo(d)ATP. The danger of 8-oxoA is underscored by the existence of dedicated cellular repair machinery that explicitly excise it from DNA, the attenuation of translation induced by 8-oxoA-mRNA or damaged ribosomes, and its potency as a TLR7 agonist. Here we present the discovery, purification, and biochemical characterization of a new mouse IgGk1 monoclonal antibody (6E4) that specifically targets 8-oxoA. Utilizing an AchE-based competitive ELISA assay, we demonstrate the selectivity of 6E4 for 8-oxoA over a plethora of canonical and chemically modified nucleosides including 8-oxoG, A, m6A, 2-oxoA, and 5-hoU. We further show the ability of 6E4 to exclusively recognize 8-oxoA in nucleoside triphosphates (8-oxoATP) and DNA/RNA oligonucleotides containing a single 8-oxoA. 6E4 also binds 8-oxoA in duplex DNA/RNA antigens where the lesion is either paired correctly or base mismatched. Our findings define the 8-oxoAde nucleobase as the critical epitope and indicate mAb 6E4 is ideally suited for a broad range of immunological applications in nucleic acid detection and quality control.
Assuntos
Adenina , RNA , Animais , Camundongos , RNA/química , Anticorpos Monoclonais , DNA/metabolismo , MutagêneseRESUMO
Angelonia angustifolia Benth. is a small herbaceous plant with documented use as an anti-inflammatory remedy by indigenous cultures in Latin America. It has subsequently been developed as an ornamental annual widely available in nurseries in the United States. Chemical investigation led to the discovery that lupeol is the major organic soluble constituent in the roots, and is present in large quantities in the aerial structures of the plant. Lupeol was identified by 1D and 2D NMR spectroscopic techniques and quantified by HPLC-MS. The concentration of lupeol (9.14 mg/g in roots) in A. angustifolia is approximately 3 times higher than any previously reported sources. Therefore, the amount of lupeol in the roots of a single individual of A. angustifolia greatly exceeds the previously determined topical threshold for significant reduction of inflammation. The presence of topically therapeutic levels of lupeol in A. angustifolia provides chemical rationale for its indigenous use. In addition, the established cultivation of A. angustifolia could allow this plant to be used as a source of the important bioactive molecule lupeol, or to be developed as a nutraceutical without damaging wild populations.