Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 11(5): 609-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755604

RESUMO

In recent years, RNA has been shown to fulfil a number of cellular functions. This has led to much interest in elucidation of the structure of functional RNA molecules, and thus, in the preparation of suitably functionalized RNAs. The chemical synthesis of RNAs allows for the site-specific modification; however, is limited to sequences of about 60-70 nucleotides in length. At the example of the flavine mononucleotide (FMN) responsive aptamer of the ypaA riboswitch from B. subtilis, we demonstrate the highly efficient preparation of site-specifically modified long-mer RNAs. Our strategy consists of the chemical synthesis of fragments followed by enzymatic or chemical ligation. Splint ligation with T4 RNA ligase turned out to be most successful among the enyzymatic protocols. Highly efficient chemical ligation was performed by azide-alkyne cycloaddition of suitably modified RNA fragments. Wild-type and 2-aminopurine (2-AP)-modified variants of the ypaA aptamer were prepared. FMN binding to all synthesized ypaA aptamer variants is demonstrated. However, dissociation of FMN from its binding site by reduction of the isoalloxazin unit as demonstrated before for a small-hairpin-derived aptazyme could not be shown. This implies that either FMN is less accessible to reduction when it is bound to its natural aptamer; that reduced FMN remains bound to the aptamer; or that FMN upon reduction indeed is released from its binding site, without the aptamer folding back in the natural ligand-free state. The results of this study are of general interest to the preparation of site-specifically modified RNAs for investigation into structure and function.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Mononucleotídeo de Flavina/metabolismo , RNA/metabolismo , Riboswitch , Regulação Alostérica , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Química Click , Conformação de Ácido Nucleico , RNA/síntese química , RNA/química , RNA Catalítico/química , RNA Catalítico/metabolismo
2.
Appl Environ Microbiol ; 77(24): 8705-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003022

RESUMO

In this study, we characterized the genetic background of various nleA variants in 106 Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) strains. The flanking regions of eight nleA variants were analyzed by DNA sequencing and compared with the corresponding regions of five previously described NleA-encoding prophages. The analyzed nleA variants were all located downstream of the DNA region responsible for phage morphogenesis. In particular, the type III effector genes avrA, ospB, nleH, and nleG and IS elements were detected in the neighborhood of nleA. The structure of the eight analyzed regions flanking nleA primarily resembled the corresponding region of the NleA4795-encoding prophage BP-4795. Using PCR, the gene order flanking 13 nleA variants in strains of different serogroups was compared to the respective regions in reference strains. The analyses showed that strains which harbor prophages with conserved flanking regions of a particular nleA variant predominantly occurred, and IS elements were additionally detected in these regions. We were able to mobilize nleA by transduction in 20% of strains determined, which comprised in particular EPEC strains harboring an nleA variant, the gene encoding the protein known as "EspI-like." Plaque hybridization was used to identify phages that harbor the genes stx and nleA. However, only two strains harbored variant nleA4795 in the genome of an Stx1 prophage.


Assuntos
Adesinas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Genética Horizontal , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli Enteropatogênica/patogenicidade , Ordem dos Genes , Dados de Sequência Molecular , Prófagos/genética , Análise de Sequência de DNA , Escherichia coli Shiga Toxigênica/patogenicidade , Sintenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa