Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epidemiol Infect ; 151: e74, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092681

RESUMO

COVID-19 impacts population health equity. While mRNA vaccines protect against serious illness and death, little New Zealand (NZ) data exist about the impact of Omicron - and the effectiveness of vaccination - on different population groups. We aim to examine the impact of Omicron on Maori, Pacific, and Other ethnicities and how this interacts with age and vaccination status in the Te Manawa Taki Midland region of NZ. Daily COVID-19 infection and hospitalisation rates (1 February 2022 to 29 June 2022) were calculated for Maori, Pacific, and Other ethnicities for six age bands. A multivariate logistic regression model quantified the effects of ethnicity, age, and vaccination on hospitalisation rates. Per-capita Omicron cases were highest and occurred earliest among Pacific (9 per 1,000) and Maori (5 per 1,000) people and were highest among 12-24-year-olds (7 per 1,000). Hospitalisation was significantly more likely for Maori people (odds ratio (OR) = 2.03), Pacific people (OR = 1.75), over 75-year-olds (OR = 39.22), and unvaccinated people (OR = 4.64). Length of hospitalisation is strongly related to age. COVID-19 vaccination reduces hospitalisations for older individuals and Maori and Pacific populations. Omicron inequitably impacted Maori and Pacific people through higher per-capita infection and hospitalisation rates. Older people are more likely to be hospitalised and for longer.


Assuntos
COVID-19 , Disparidades nos Níveis de Saúde , Povo Maori , Idoso , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Hospitalização , Nova Zelândia/epidemiologia , População Branca
2.
Nat Astron ; 6(12): 1398-1413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531130

RESUMO

Past analysis has shown that the heliosphere structure can be deduced from correlations between long-scale solar wind pressure evolution and energetic neutral atom emissions. However, this required spatial and temporal averaging that smoothed out small or dynamic features of the heliosphere. In late 2014, the solar wind dynamic pressure increased by roughly 50% over a period of 6 months, causing a time and directional-dependent rise in around 2-6 keV energetic neutral atom fluxes from the heliosphere observed by the Interstellar Boundary Explorer. Here, we use the 2014 pressure enhancement to provide a simultaneous derivation of the three-dimensional heliospheric termination shock (HTS) and heliopause (HP) distances at high resolution from Interstellar Boundary Explorer measurements. The analysis reveals rippled HTS and HP surfaces that are oblique with respect to the local interstellar medium upwind direction, with significant asymmetries in the heliosphere structure compared to steady-state heliosphere models. We estimate that the heliosphere boundaries contain roughly ten astronomical unit-sized spatial variations, with slightly larger variations on the HTS surface than the HP and a large-scale, southwards-directed obliquity of the surfaces in the meridional plane. Comparisons of the derived HTS and HP distances with Voyager observations indicate substantial differences in the heliosphere boundaries in the northern versus southern hemispheres and their motion over time.

3.
Space Sci Rev ; 218(4): 36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664863

RESUMO

This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks. Finally, open issues relating to the physical relevance of so-called "croissant" models of the heliosphere, as well as the general (dis)agreement of model predictions with observations are highlighted and critically discussed.

4.
Astrophys J ; 831(2)2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35027771

RESUMO

In this paper, we present results from our three-dimensional (3D) simulations of the interaction between the solar wind and local interstellar medium with an emphasis on the phase-space properties of energetic neutral atoms (ENAs) along a sight line that intersects the ribbon of enhanced ENA flux seen by NASA's Interstellar Boundary EXplorer spacecraft. The majority of these ENAs have velocities directed away from the heliosphere, but it is believed that interactions between heliospheric ENAs and ions outside the heliosphere may result in a population of secondary ENAs that return to the heliosphere and generate the ribbon. While we do not consider the ion dynamics that result in secondary ENAs, our analysis is of key importance to the process since the heliospheric ENAs we consider form the source population for those ions. We present the moments of the hydrogen distribution, along with moments parallel and perpendicular to the local magnetic field for the pick-up ions (PUIs) that these neutrals generate. Finally, we present gyro-averaged velocity distributions relative to the local magnetic field for the PUIs created from our simulated H-atoms, along with analytic fits to these distributions in the secondary ENA source region just beyond the heliopause.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa