Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38991791

RESUMO

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.


Assuntos
Condroitina ABC Liase , Cocaína , Hipocampo , Memória , Córtex Pré-Frontal , Autoadministração , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Masculino , Ratos , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Condroitina ABC Liase/farmacologia , Memória/efeitos dos fármacos , Memória/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Ratos Sprague-Dawley , Parvalbuminas/metabolismo , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia
2.
J Proteome Res ; 23(7): 2629-2640, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38885176

RESUMO

Some patients develop persistent eye pain after refractive surgery, but factors that cause or sustain pain are unknown. We tested whether tear proteins of patients with pain 3 months after surgery differ from those of patients without pain. Patients undergoing refractive surgery (laser in situ keratomileusis or photorefractive keratectomy ) were recruited from 2 clinics, and tears were collected 3 months after surgery. Participants rated their eye pain using a numerical rating scale (NRS, 0-10; no pain-worst pain) at baseline, 1 day, and 3 months after surgery. Using tandem mass tag proteomic analysis, we examined tears from patients with pain [NRS ≥ 3 at 3 months (n = 16)] and patients with no pain [NRS ≤ 1 at 3 months (n = 32)] after surgery. A subset of proteins (83 of 2748 detected, 3.0%) were associated with pain 3 months after surgery. High-dimensional statistical models showed that the magnitude of differential expression was not the only important factor in classifying tear samples from pain patients. Models utilizing 3 or 4 proteins had better classification performance than single proteins and represented differences in both directions (higher or lower in pain). Thus, patterns of protein differences may serve as biomarkers of postsurgical eye pain as well as potential therapeutic targets.


Assuntos
Biomarcadores , Proteínas do Olho , Humanos , Biomarcadores/metabolismo , Feminino , Masculino , Adulto , Proteínas do Olho/metabolismo , Proteínas do Olho/análise , Proteômica/métodos , Pessoa de Meia-Idade , Dor Ocular/etiologia , Lágrimas/química , Lágrimas/metabolismo , Ceratomileuse Assistida por Excimer Laser In Situ/efeitos adversos , Ceratectomia Fotorrefrativa/efeitos adversos , Espectrometria de Massas em Tandem , Dor Pós-Operatória/etiologia , Procedimentos Cirúrgicos Refrativos/efeitos adversos
3.
Am J Physiol Heart Circ Physiol ; 326(1): H166-H179, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947434

RESUMO

Neurons in the stellate ganglion (SG) provide sympathetic innervation to the heart, brown adipose tissue (BAT), and other organs. Sympathetic innervation to the heart becomes hyperactive following myocardial infarction (MI). The impact of MI on the morphology of cardiac sympathetic neurons is not known, but we hypothesized that MI would stimulate increased cell and dendritic tree size in cardiac neurons. In this study, we examined the effects of ischemia-reperfusion MI on sympathetic neurons using dual retrograde tracing methods to allow detailed characterization of cardiac- and BAT-projecting neurons. Different fluorescently conjugated cholera toxin subunit B (CTb) tracers were injected into the pericardium and the interscapular BAT pads, respectively. Experimental animals received a 45-min occlusion of the left anterior descending coronary artery and controls received sham surgery. One week later, hearts were collected for assessment of MI infarct and SGs were collected for morphological or electrophysiological analysis. Cardiac-projecting SG neurons from MI mice had smaller cell bodies and shorter dendritic trees compared with sham animals, specifically on the left side ipsilateral to the MI. BAT-projecting neurons were not altered by MI, demonstrating the subpopulation specificity of the response. The normal size and distribution differences between BAT- and cardiac-projecting stellate ganglion neurons were not altered by MI. Patch-clamp recordings from cardiac-projecting left SG neurons revealed increased spontaneous excitatory postsynaptic currents despite the decrease in cell and dendritic tree size. Thus, increased dendritic tree size does not contribute to the enhanced sympathetic neural activity seen after MI.NEW & NOTEWORTHY Myocardial infarction (MI) causes structural and functional changes specifically in stellate ganglion neurons that project to the heart, but not in cells that project to brown adipose fat tissue.


Assuntos
Infarto do Miocárdio , Gânglio Estrelado , Animais , Camundongos , Gânglio Estrelado/fisiologia , Coração/inervação , Neurônios/fisiologia , Reperfusão
4.
Ophthalmology ; 130(7): 692-701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809816

RESUMO

PURPOSE: To examine the frequency and risk factors for ocular pain after laser assisted in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK). DESIGN: Prospective study of individuals undergoing refractive surgery at 2 different centers. PARTICIPANTS: One hundred nine individuals undergoing refractive surgery: 87% LASIK and 13% PRK. METHODS: Participants rated ocular pain on a numerical rating scale (NRS) of 0 to 10 before surgery and 1 day, 3 months, and 6 months after surgery. A clinical examination focused on ocular surface health was performed 3 and 6 months after surgery. Persistent ocular pain was defined as an NRS score of 3 or more at both 3 and 6 months after surgery (patients), and this group was compared with individuals with NRS scores of < 3 at both time points (control participants). MAIN OUTCOME MEASURES: Individuals with persistent ocular pain after refractive surgery. RESULTS: The 109 patients who underwent refractive surgery were followed up for 6 months after surgery. Mean age was 34 ± 8 years (range, 23-57 years); 62% self-identified as female, 81% as White, and 33% as Hispanic. Eight patients (7%) reported ocular pain (NRS score ≥ 3) before surgery, with the frequency of ocular pain increasing after surgery to 23% (n = 25) at 3 months and 24% (n = 26) at 6 months. Twelve patients (11%) reported an NRS score of 3 or more at both time points and constituted the persistent pain group. Factors that predicted persistent pain after surgery in a multivariable analysis were (1) ocular pain before surgery predicated persistent pain after surgery (odds ratio [OR], 1.87; 95% confidence interval [CI], 1.06-3.31), (2) symptom report of depression before surgery (Patient Health Questionnaire-9: OR, 1.3; 95% CI, 1.1-1.6; P = 0.01), (3) use of an oral antiallergy medication before surgery (OR, 13.6; 95% CI, 2.1-89.3; P = 0.007), and (4) pain intensity day 1 after surgery (OR, 1.6; 95% CI, 1.2-2.2; P = 0.005). There were no significant associations between ocular surface signs of tear dysfunction and ocular pain, P > 0.05 for all ocular surface signs. Most individuals (> 90%) were completely or somewhat satisfied with their vision at 3 and 6 months. CONCLUSIONS: Eleven percent of individuals reported persistent ocular pain after refractive surgery, with several preoperative and perioperative factors predicting pain after surgery. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Ceratomileuse Assistida por Excimer Laser In Situ , Miopia , Ceratectomia Fotorrefrativa , Humanos , Feminino , Adulto , Lasers de Excimer/uso terapêutico , Estudos Prospectivos , Ceratectomia Fotorrefrativa/efeitos adversos , Ceratomileuse Assistida por Excimer Laser In Situ/efeitos adversos , Córnea , Dor/etiologia , Dor/cirurgia , Dor Ocular/diagnóstico , Dor Ocular/etiologia , Fatores de Risco , Refração Ocular
5.
Exp Eye Res ; 225: 109281, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265575

RESUMO

Photorefractive keratectomy (PRK) is an alternative to LASIK and can cause intense acute pain that is often not relieved by standard treatments. To assess potential therapeutics for this type of acute pain, appropriate preclinical models are needed. We describe a preclinical corneal abrasion rat model that simulates the initial stages of PRK surgery and demonstrates similar pain and tear dysfunction as seen clinically. We used both behavioral and homeostatic assays to determine the therapeutic potential of resveratrol on pain and tear production. Studies were conducted in male and female Sprague-Dawley rats. Heptanol was applied to one eye and the superficial corneal epithelium was removed, mimicking the abrasion used in PRK. Spontaneous pain was assessed with orbital tightening (OT) scores for 7 days. Topical resveratrol increased OT scores sex-specifically in abraded males, but not females, at 72 h and 1 week after abrasion. Resveratrol increased tear production in abraded males, with no effect in abraded females. There was no correlation between OT score at 1 week and tear production measurements, demonstrating no relationship between spontaneous ocular pain and tear dysfunction in this model. These findings demonstrate the usefulness of our corneal abrasion preclinical PRK model for the assessment of ocular pain therapeutics and indicate that topical resveratrol may not be useful for managing PRK-induced pain.


Assuntos
Dor Aguda , Lesões da Córnea , Epitélio Corneano , Miopia , Ceratectomia Fotorrefrativa , Masculino , Ratos , Animais , Ceratectomia Fotorrefrativa/efeitos adversos , Resveratrol , Lasers de Excimer , Dor Aguda/cirurgia , Ratos Sprague-Dawley , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/cirurgia , Córnea
6.
Addict Biol ; 26(3): e12947, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32750200

RESUMO

Substance use disorder is a complex disease created in part by maladaptive learning and memory mechanisms following repeated drug use. Exposure to drug-associated stimuli engages prefrontal cortex circuits, and dysfunction of the medial prefrontal cortex (mPFC) is thought to underlie drug-seeking behaviors. Growing evidence supports a role for parvalbumin containing fast-spiking interneurons (FSI) in modulating prefrontal cortical microcircuit activity by influencing the balance of excitation and inhibition, which can influence learning and memory processes. Most parvalbumin FSIs within layer V of the prelimbic mPFC are surrounded by specialized extracellular matrix structures called perineuronal nets (PNN). Previous work by our group found that cocaine exposure altered PNN-surrounded FSI function, and pharmacological removal of PNNs reduced cocaine-seeking behavior. However, the role of FSIs and associated constituents (parvalbumin and PNNs) in cocaine-related memories was not previously explored and is still unknown. Here, we found that reactivation of a cocaine conditioned place preference memory produced changes in cortical PNN-surrounded parvalbumin FSIs, including decreased parvalbumin intensity, increased parvalbumin cell axis diameter, decreased intrinsic excitability, and increased excitatory synaptic input. Further investigation of intrinsic properties revealed changes in the interspike interval, membrane capacitance, and afterhyperpolarization recovery time. Changes in these specific properties suggest an increase in potassium-mediated currents, which was validated with additional electrophysiological analysis. Collectively, our results indicate that cocaine memory reactivation induces functional adaptations in PNN-surrounded parvalbumin neurons, which likely alters cortical output to promote cocaine-seeking behavior.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/fisiologia , Interneurônios/efeitos dos fármacos , Rede Nervosa/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Condicionamento Operante/efeitos dos fármacos , Masculino , Memória , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Substâncias
7.
J Neurophysiol ; 111(11): 2222-31, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24598529

RESUMO

Trigeminal sensory afferent fibers terminating in nucleus caudalis (Vc) relay sensory information from craniofacial regions to the brain and are known to express transient receptor potential (TRP) ion channels. TRP channels are activated by H(+), thermal, and chemical stimuli. The present study investigated the relationships among the spontaneous release of glutamate, temperature, and TRPV1 localization at synapses in the Vc. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from Vc neurons (n = 151) in horizontal brain-stem slices obtained from Sprague-Dawley rats. Neurons had basal sEPSC rates that fell into two distinct frequency categories: High (≥10 Hz) or Low (<10 Hz) at 35°C. Of all recorded neurons, those with High basal release rates (67%) at near-physiological temperatures greatly reduced their sEPSC rate when cooled to 30°C without amplitude changes. Such responses persisted during blockade of action potentials indicating that the High rate of glutamate release arises from presynaptic thermal mechanisms. Neurons with Low basal frequencies (33%) showed minor thermal changes in sEPSC rate that were abolished after addition of TTX, suggesting these responses were indirect and required local circuits. Activation of TRPV1 with capsaicin (100 nM) increased miniature EPSC (mEPSC) frequency in 70% of neurons, but half of these neurons had Low basal mEPSC rates and no temperature sensitivity. Our evidence indicates that normal temperatures (35-37°C) drive spontaneous excitatory synaptic activity within superficial Vc by a mechanism independent of presynaptic action potentials. Thus thermally sensitive inputs on superficial Vc neurons may tonically activate these neurons without afferent stimulation.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Ácido Glutâmico/metabolismo , Células do Corno Posterior/fisiologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/metabolismo , Sensação Térmica/fisiologia , Núcleos do Trigêmeo/fisiologia , Animais , Ativação do Canal Iônico/fisiologia , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley
9.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370716

RESUMO

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory. ABC injections into the dorsal mPFC prior to training attenuated the acquisition of cocaine self-administration. Also, ABC given 3 days prior to but not 1 hr after memory reactivation blocked cue-induced reinstatement. However, reduced reinstatement was present only in rats given a novel reactivation contingency, suggesting that PNNs are required for the updating of a familiar memory. In naive rats, ABC injections into mPFC did not alter excitatory or inhibitory puncta on PV cells but reduced PV intensity. Whole-cell recordings revealed a greater inter-spike interval 1 hr after ABC, but not 3 days later. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during novel memory reactivation revealed that ABC in the mPFC prevented reward-associated increases in beta and gamma activity as well as phase-amplitude coupling between the dHIP and mPFC. Together, our findings show that PNN removal attenuates the acquisition of cocaine self-administration memories and disrupts reconsolidation of the original memory when combined with a novel reactivation session. Further, reduced dHIP/mPFC coupling after PNN removal may serve as a key biomarker for how to disrupt reconsolidation of cocaine memories and reduce relapse.

10.
Ocul Surf ; 28: 58-78, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764654

RESUMO

PURPOSE: Human tears contain abundant, diverse sets of proteins that may serve as biomarkers of ocular surface health. There is a need for reproducible methods that consider multiple factors influencing the tear proteome, in addition to the variable of interest. Here we examined a workflow for proteomic analysis of tear proteins without the need to pool tear samples from multiple individuals, thus allowing for analyses based on individual factors, and increasing opportunities for protein biomarker discovery. METHODS: Tears were collected by Schirmer strip following topical ocular anesthetic application then individually stored at -80 °C prior to processing for proteomics. Tear proteins were extracted from Schirmer strips, digested using suspension trapping spin columns (S-Trap), and labeled with high multiplicity tandem mass tags (TMT). Peptide digests were then extensively fractionated by two-dimensional chromatography and analyzed by mass spectrometry to identify and measure changes in protein abundance in each sample. Analysis of select samples was performed to test protocols and to compare the impact of clinically relevant parameters. To facilitate comparison of separate TMT experiments, common pool samples were included in each TMT instrument run and internal reference scaling (IRS) was performed. RESULTS: Differences in subsets of tear proteins were noted for: geographic site of tear collection, contact lens use, and differences in tear fluid volume among individuals. CONCLUSION: These findings demonstrate that proteomic analysis of human tear proteins can be performed without the need to pool samples, and that development of analytic workflows must consider factors that may affect outcomes in studies focused on diverse clinical samples.


Assuntos
Proteômica , Projetos de Pesquisa , Humanos , Proteômica/métodos , Lágrimas/metabolismo , Proteínas do Olho/metabolismo
11.
Physiol Rep ; 10(10): e15334, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35621038

RESUMO

Sympathetic neurons that innervate the heart are located primarily in the stellate ganglia (SG), which also contains neurons that project to brown adipose tissue (BAT). These studies were designed to examine the morphology of these two populations (cardiac- and BAT-projecting) and their target connectivity. We examined SG neurons in C57BL/6J mice following injections of the retrograde tracer cholera toxin B (CTb) conjugated to Alexa Fluor 488 and Alexa Fluor 555, into cardiac tissue and intrascapular BAT. BAT-projecting SG neurons were widely dispersed in SG, while cardiac-projecting SG neurons were localized primarily near the inferior cardiac nerve base. SG neurons were not dual-labeled, suggesting that sympathetic innervation is specific to the heart and BAT, supporting the idea of "labeled lines" of efferents. Morphologically, cardiac-projecting SG somata had more volume and were less abundant than BAT-projecting neurons using our tracer-labeling paradigm. We found a positive correlation between the number of primary dendrites per neuron and soma volume in cardiac-projecting SG neurons, though not in BAT-projecting neurons. In both SG subpopulations, the number of cholinergic inputs marked with vesicular acetylcholine transporter (VAChT) puncta contacting the soma was positively correlated to soma volume, suggesting scaling of inputs across a range of neuronal sizes. In separate studies using dual tracing from left and right BAT, we found that BAT-projecting SG neurons were located predominately ipsilateral to the injection, but a small subset of SG neurons project bilaterally to BAT. This tracing approach will allow the assessment of cell-specific mechanisms of plasticity within subpopulations of SG neurons.


Assuntos
Tecido Adiposo Marrom , Gânglio Estrelado , Animais , Fluoresceínas , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Gânglio Estrelado/fisiologia , Ácidos Sulfônicos
12.
Invest Ophthalmol Vis Sci ; 63(1): 38, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084430

RESUMO

Purpose: Patients receiving chemotherapy may experience ocular discomfort and dry eye-like symptoms; the latter may be neuropathic in nature. This study assessed corneal and somatic hypersensitivity in male rats treated with paclitaxel and whether it was relieved by nicotinamide riboside (NR). Methods: Corneal sensitivity to tactile and chemical stimulation, basal tear production, and sensitivity of the hindpaw to tactile and cool stimuli were assessed before and after paclitaxel in the absence and presence of sustained treatment with 500 mg/kg per os NR. Corneal nerve density and hindpaw intraepidermal nerve fiber (IENF) density were also examined. Results: Paclitaxel-treated rats developed corneal hypersensitivity to tactile stimuli, enhanced sensitivity to capsaicin but not hyperosmolar saline, and increased basal tear production. Corneal nerve density visualized with anti-ß-tubulin or calcitonin gene-related peptide (CGRP) was unaffected. Paclitaxel induced tactile and cool hypersensitivity of the hindpaw and a loss of nonpeptidergic hindpaw IENFs visualized with anti-protein gene product (PGP) 9.5 and CGRP. NR reversed tactile hypersensitivity of the cornea without suppressing tear production or chemosensitivity; it did not alter corneal afferent density. NR also reversed tactile and cool hypersensitivity of the hindpaw without reversing the loss of hindpaw IENFs. Conclusions: These findings suggest that paclitaxel may be a good translational model for chemotherapy-induced ocular discomfort and that NR may be useful for its relief. The ability of NR to relieve somatic tactile hypersensitivity independent of changes in sensory nerve innervation suggests that reversal of terminal arbor degeneration is not critical to the actions of NR.


Assuntos
Doenças da Córnea/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Niacinamida/farmacologia , Paclitaxel/toxicidade , Lágrimas/metabolismo , Animais , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/metabolismo , Modelos Animais de Doenças , Hipersensibilidade/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Complexo Vitamínico B/farmacologia
13.
Brain Res ; 1769: 147625, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416255

RESUMO

The nucleus of the solitary tract (NTS) receives viscerosensory information from the vagus nerve to regulate diverse homeostatic reflex functions. The NTS projects to a wide network of other brain regions, including the paraventricular nucleus of the hypothalamus (PVN). Here we examined the synaptic characteristics of primary afferent pathways to PVN-projecting NTS neurons in rat brainstem slices.Expression of the Transient Receptor Potential Vanilloid receptor (TRPV1+ ) distinguishes C-fiber afferents within the solitary tract (ST) from A-fibers (TRPV1-). We used resiniferatoxin (RTX), a TRPV1 agonist, to differentiate the two. The variability in the latency (jitter) of evoked excitatory postsynaptic currents (ST-EPSCs) distinguished monosynaptic from polysynaptic ST-EPSCs. Rhodamine injected into PVN was retrogradely transported to identify PVN-projecting NTS neurons within brainstem slices. Graded shocks to the ST elicited all-or-none EPSCs in rhodamine-positive NTS neurons with latencies that had either low jitter (<200 µs - monosynaptic), high jitter (>200 µs - polysynaptic inputs) or both. RTX blocked ST-evoked TRPV1 + EPSCs whether mono- or polysynaptic. Most PVN-projecting NTS neurons (17/21 neurons) had at least one input polysynaptically connected to the ST. Compared to unlabeled NTS neurons, PVN-projecting NTS neurons were more likely to receive indirect inputs and be higher order. Surprisingly, sEPSC rates for PVN-projecting neurons were double that of unlabeled NTS neurons. The ST synaptic responses for PVN-projecting NTS neurons were either all TRPV1+ or all TRPV1-, including neurons that received both direct and indirect inputs. Overall, PVN-projecting NTS neurons received direct and indirect vagal afferent information with strict segregation regarding TRPV1 expression.


Assuntos
Vias Aferentes/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Nervo Vago/fisiologia , Animais , Diterpenos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Núcleo Hipotalâmico Paraventricular/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/metabolismo , Sinapses/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo , Nervo Vago/citologia
14.
Brain Struct Funct ; 226(4): 1135-1153, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33585984

RESUMO

Perineuronal nets (PNNs) surrounding fast-spiking, parvalbumin (PV) interneurons provide excitatory:inhibitory balance, which is impaired in several disorders associated with altered diurnal rhythms, yet few studies have examined diurnal rhythms of PNNs or PV cells. We measured the intensity and number of PV cells and PNNs labeled with Wisteria floribunda agglutinin (WFA) and also the oxidative stress marker 8-oxo-deoxyguanosine (8-oxo-dG) in rat prelimbic medial prefrontal cortex (mPFC) at Zeitgeber times (ZT) ZT0 (lights-on, inactive phase), ZT6 (mid-inactive phase), ZT12 (lights-off, active phase), and ZT18 (mid-active phase). Relative to ZT0, the intensities of PNN and PV labeling were increased in the dark (active) phase compared with the light (inactive) phase. The intensity of 8-oxo-dG was decreased from ZT0 at all times (ZT6,12,18). We also measured GAD 65/67 and vGLUT1 puncta apposed to PV cells with and without PNNs. There were more excitatory puncta on PV cells with PNNs at ZT18 vs. ZT6, but no changes in PV cells without PNNs and no changes in inhibitory puncta. Whole-cell slice recordings in fast-spiking (PV) cells with PNNs showed an increased ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor:N-methyl-D-aspartate receptor (AMPA: NMDA) at ZT18 vs. ZT6. The number of PV cells and PV/PNN cells containing orthodenticle homeobox 2 (OTX2), which maintains PNNs, showed a strong trend toward an increase from ZT6 to ZT18. Diurnal fluctuations in PNNs and PV cells are expected to alter cortical excitatory:inhibitory balance and provide new insights into treatments for diseases impacted by disturbances in sleep and circadian rhythms.


Assuntos
Neurônios , Córtex Pré-Frontal , 8-Hidroxi-2'-Desoxiguanosina , Animais , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos
15.
J Pharmacol Exp Ther ; 331(2): 412-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19684256

RESUMO

Repeated administration of opioids produces long-lasting changes in micro-opioid receptor (MOR) signaling that underlie behavioral changes such as tolerance. Mitogen-activated protein kinase (MAPK) pathways, including MAPK extracellular signal-regulated kinases (ERK1/2), are modulated by opioids and are known to produce long-lasting changes in cell signaling. Thus, we tested the hypothesis that ERK1/2 activation contributes to the development and/or expression of morphine tolerance mediated by the periaqueductal gray (PAG). Changes in phosphorylated ERK1/2 expression were assessed with confocal microscopy and compared to behavioral measures of tolerance to the antinociceptive effects of chronic morphine administration. Repeated microinjection of morphine into the PAG produced tolerance and caused a significant increase in ERK1/2 phosphorylation, an effect not evident with acute morphine microinjection. Microinjection of the MAPK/ERK kinase inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene ethanolate (U0126), into the PAG had no effect on antinociception produced by acute morphine administration. However, repeated coadministration of U0126 and morphine into the PAG blocked ERK1/2 phosphorylation and enhanced the development of morphine tolerance. Coadministration of U0126 with morphine only on the test day also enhanced the expression of morphine tolerance. Administration of the irreversible opioid receptor antagonist beta-chlornaltrexamine blocked the activation of ERK1/2 caused by repeated morphine microinjections, demonstrating that ERK1/2 activation was a MOR-mediated event. In summary, these studies show that chronic morphine administration alters ERK1/2 signaling and that disruption of ERK1/2 signaling enhances both the development and expression of morphine tolerance. Contrary to expectations, these data indicate that ERK1/2 activation opposes the development of morphine tolerance.


Assuntos
Analgésicos Opioides/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfina/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Animais , Tolerância a Medicamentos , Imuno-Histoquímica , Masculino , Microinjeções , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
16.
J Pain ; 9(1): 11-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17950674

RESUMO

UNLABELLED: Opiate analgesic tolerance is defined as a need for higher doses of opiates to maintain pain relief after prolonged opiate exposure. Though changes in the opioid receptor undoubtedly occur during conditions of opiate tolerance, there is increasing evidence that opiate analgesic tolerance is also caused by pronociceptive adaptations in the spinal cord. We have previously observed increased glutamate release in the spinal cord dorsal horn of neonatal rats made tolerant to the opiate morphine. In this study, we investigate whether spinal substance P (SP) and its receptor, the neurokinin 1 (NK1) receptor, are also modulated by prolonged morphine exposure. Immunocytochemical studies show decreased SP- and NK1-immunoreactivity in the dorsal horn of morphine-treated rats, whereas SP mRNA in the dorsal root ganglia is not changed. Electrophysiological studies show that SP fails to activate the NK1 receptor in the morphine-treated rat. Taken together, the data indicate that chronic morphine treatment in the neonatal rat is characterized by a loss of SP effects on the NK1 receptor in lamina I of the neonatal spinal cord dorsal horn. The results are discussed in terms of compensatory spinal cord processes that may contribute to opiate analgesic tolerance. PERSPECTIVE: This article describes anatomical and physiological changes that occur in the spinal cord dorsal horn of neonatal rats after chronic morphine treatment. These changes may represent an additional compensatory process of morphine tolerance and may represent an additional therapeutic target for the retention and restoration of pain relief with prolonged morphine treatment.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Células do Corno Posterior/efeitos dos fármacos , Receptores da Neurocinina-1/efeitos dos fármacos , Substância P/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Tolerância a Medicamentos/fisiologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Técnicas de Cultura de Órgãos , Dor/metabolismo , Dor/fisiopatologia , Técnicas de Patch-Clamp , Células do Corno Posterior/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Substância P/genética , Substância P/metabolismo
17.
Invest Ophthalmol Vis Sci ; 59(12): 5217-5224, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30372750

RESUMO

Purpose: To evaluate spontaneous and evoked ocular sensory responses in rats after denervation of the lacrimal gland, as well as protein changes in tears that may mediate functional changes. Methods: Sprague-Dawley rats served as subjects. The left lacrimal gland was partially denervated with saporin toxin conjugated to p75. Unilateral and bilateral eye closures (winks and blinks) and grooming behaviors were measured weekly. Nociceptive responses were evoked by ocular application of menthol; tear production was assessed using the phenol thread test. Relative changes in tear protein abundances were measured using a Tandem Mass Tagging approach. Results: Denervation of the lacrimal gland reduced eye closure behavior, particularly in the ipsilateral eye, and eye wipe responses to noxious menthol were also reduced. Tear volume did not change, but tear protein composition was altered. Proteins implicated in the structural integrity of epithelial cells and in protective functions were reduced by lacrimal denervation, including keratins, serotransferrin, and beta-defensin. Other proteins that may modulate TRPM8 channels and alter sensory neuronal function were reduced, including arachidonate 15-lipoxygenase B. A low-abundance protein that responds to oxidative stress and injury, proteasome subunit beta type 10, was upregulated in denervated rats. Conclusions: Denervation of the lacrimal gland causes long-lasting hypoalgesia, impairs the blink response, and alters tear proteins. Tear proteins were altered without changing tear volume. We speculate that impaired TRPM8 function in corneal sensory nerves may contribute to ocular hypoalgesia, supporting growing evidence that this transduction molecule is important for both nociceptive and spontaneous blinking behaviors.


Assuntos
Doenças da Córnea/etiologia , Dor Ocular/etiologia , Proteínas do Olho/metabolismo , Doenças Palpebrais/etiologia , Aparelho Lacrimal/inervação , Bloqueio Nervoso/efeitos adversos , Dor Nociceptiva/etiologia , Animais , Piscadela/fisiologia , Doenças da Córnea/metabolismo , Dor Ocular/metabolismo , Doenças Palpebrais/metabolismo , Imunoconjugados , Masculino , Dor Nociceptiva/metabolismo , Ratos , Ratos Sprague-Dawley , Saporinas , Lágrimas/metabolismo
18.
Pain Rep ; 3(4): e664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123857

RESUMO

INTRODUCTION: Corneal nerves mediate pain from the ocular surface, lacrimation, and blinking, all of which protect corneal surface homeostasis and help preserve vision. Because pain, lacrimation and blinking are rarely assessed at the same time, it is not known whether these responses and their underlying mechanisms have similar temporal dynamics after acute corneal injury. METHODS: We examined changes in corneal nerve density, evoked and spontaneous pain, and ocular homeostasis in Sprague-Dawley male rats after a superficial epithelial injury with heptanol. We also measured changes in calcitonin gene-related peptide (CGRP), which has been implicated in both pain and epithelial repair. RESULTS: Hyperalgesia was seen 24 hours after abrasion injury, while basal tear production was normal. One week after abrasion injury, pain responses had returned to baseline levels and dry eye symptoms emerged. There was no correlation between epithelial nerve density and pain responses. Expression of both ATF3 (a nerve injury marker) and CGRP increased in trigeminal ganglia 24 hours after injury when hyperalgesia was seen, and returned to normal one week later when pain behavior was normal. These molecular changes were absent in the contralateral ganglion, despite reductions in corneal epithelial nerve density in the uninjured eye. By contrast, CGRP was upregulated in peripheral corneal endings 1 week after injury, when dry eye symptoms emerged. CONCLUSION: Our results demonstrate dynamic trafficking of CGRP within trigeminal sensory nerves following corneal injury, with elevations in the ganglion correlated with pain behaviors and elevations in peripheral endings correlated with dry eye symptoms.

19.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294670

RESUMO

We previously reported that perineuronal nets (PNNs) are required for cocaine-associated memories. Perineuronal nets are extracellular matrix that primarily surrounds parvalbumin (PV)-containing, GABAergic fast-spiking interneurons (FSIs) in the medial prefrontal cortex (mPFC). Here we measured the impact of acute (1 d) or repeated (5 d) cocaine exposure on PNNs and PV cells within the prelimbic and infralimbic regions of the mPFC. Adult rats were exposed to 1 or 5 d of cocaine and stained for PNNs (using Wisteria floribunda agglutinin) and PV intensity 2 or 24 h later. In the prelimbic and infralimbic PFC, PNN staining intensity decreased 2 h after 1 d of cocaine exposure but increased after 5 d of cocaine exposure. Cocaine also produced changes in PV intensity, which generally lagged behind that of PNNs. In the prelimbic PFC, both 1 and 5 d of cocaine exposure increased GAD65/67 puncta near PNN-surrounded PV cells, with an increase in the GAD65/67-to-VGluT1 puncta ratio after 5 d of cocaine exposure. In the prelimbic PFC, slice electrophysiology studies in FSIs surrounded by PNNs revealed that both 1 and 5 d of cocaine exposure reduced the number of action potentials 2 h later. Synaptic changes demonstrated that 5 d of cocaine exposure increased the inhibition of FSIs, potentially reducing the inhibition of pyramidal neurons and contributing to their hyperexcitability during relapse behavior. These early and rapid responses to cocaine may alter the network stability of PV FSIs that partially mediate the persistent and chronic nature of drug addiction.


Assuntos
Cocaína/farmacologia , Interneurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Matriz Extracelular/metabolismo , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Ratos Sprague-Dawley
20.
Brain Res ; 1184: 149-59, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17964552

RESUMO

Kainate receptors (KARs) are involved in the modulation and transmission of nociceptive information from peripheral afferents to neurons in the spinal cord and trigeminal dorsal horns. KARs are found at both pre- and postsynaptic sites in the dorsal horn. We hypothesized that KARs and Substance P (SP), a modulatory neuropeptide that is used as a marker of nociceptive afferents, have a complex interactive relationship. To determine the cellular relationship and connectivity between KARs and SP afferents, we used electron microscopic dual immunocytochemical analysis to examine the ultrastructural localization of KAR subunits GluR5, 6 and 7 (GluR5,6,7) in relation to SP within laminae I and II in the rat trigeminal dorsal horn. KARs were distributed both postsynaptically in dendrites and somata (51% of GluR5,6,7 immunoreactive (-ir) profiles) and presynaptically in axons and axon terminals (45%). We also found GluR5,6,7-ir glial profiles (5%). The majority of SP-ir profiles were presynaptic axons and axon terminals. SP-ir dendritic profiles were rare, yet 23% contained GluR5,6,7 immunoreactivity. GluR5,6,7 and SP were also colocalized at presynaptic sites (18% of GluR5,6,7-ir axons and axon terminals contained SP; while 11% of SP-ir axons and axon terminals contained GluR5,6,7). The most common interaction between KARs and SP we observed was GluR5,6,7-ir dendrites contacted by SP-ir axon terminals; 54% of the dendritic targets of SP-ir axon terminals were GluR5,6,7-ir. These results provide anatomical evidence that KARs primarily mediate nociceptive transmission postsynaptic to SP-containing afferents and may also modulate the presynaptic release of SP and glutamate in trigeminal dorsal horn.


Assuntos
Células do Corno Posterior/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de Ácido Caínico/fisiologia , Substância P/metabolismo , Sinapses/metabolismo , Núcleo Espinal do Trigêmeo/citologia , Animais , Masculino , Microscopia Imunoeletrônica/métodos , Células do Corno Posterior/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/ultraestrutura , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa