Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Strahlenther Onkol ; 199(12): 1091-1109, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041372

RESUMO

Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Terapia de Alvo Molecular , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Transdução de Sinais , Microambiente Tumoral
2.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396815

RESUMO

Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Exposição Ambiental/efeitos adversos , Neoplasias/etiologia , Exposição à Radiação/efeitos adversos , Radônio/efeitos adversos , Radônio/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Neoplasias/epidemiologia , Monitoramento de Radiação , Medição de Risco , Fatores de Risco
3.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142876

RESUMO

Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line. We found that vismodegib decreases expression of the Hedgehog target genes glioma-associated oncogene homologue (GLI1) and the inhibitor of apoptosis protein (IAP) Survivin in a cell line- and irradiation-dependent manner, most pronounced in squamous cell carcinoma (SCC) cells. Furthermore, vismodegib significantly reduced proliferation in both cell lines, while additional irradiation only slightly further impacted on viability. Analyses of cell cycle distribution and cell death induction indicated a G1 arrest in BCC and a G2 arrest in HNSCC cells and an increased fraction of cells in SubG1 phase following combined treatment. Moreover, a significant rise in the number of phosphorylated histone-2AX/p53-binding protein 1 (γH2AX/53BP1) foci in vismodegib- and radiation-treated cells was associated with a significant radiosensitization of both cell lines. In summary, these findings indicate that inhibition of the Hedgehog signaling pathway may increase cellular radiation response in BCC and HNSCC cells.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Raios gama/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/antagonistas & inibidores , Piridinas/farmacologia , Radiossensibilizantes/farmacologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma Basocelular/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Especificidade de Órgãos , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Survivina/genética , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
4.
Biochim Biophys Acta ; 1856(1): 130-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26142869

RESUMO

Radiation therapy is one of the most commonly used non-surgical interventions in tumor treatment and is often combined with other modalities to enhance its efficacy. Despite recent advances in radiation oncology, treatment responses, however, vary considerably between individual patients. A variety of approaches have been developed to enhance radiation response or to counteract resistance to ionizing radiation. Among them, a relatively novel class of radiation sensitizers comprises nanoparticles (NPs) which are highly efficient and selective systems in the nanometer range. NPs can either encapsulate radiation sensitizing agents, thereby protecting them from degradation, or sensitize cancer cells to ionizing radiation via their physicochemical properties, e.g. high Z number. Moreover, they can be chemically modified for active molecular targeting and the imaging of tumors. In this review we will focus on recent developments in nanotechnology, different classes and modifications of NPs and their radiation sensitizing properties.


Assuntos
Nanopartículas , Radioterapia , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Portadores de Fármacos , Humanos , Magnetismo , Fotoquimioterapia
5.
Strahlenther Onkol ; 191(9): 742-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26051282

RESUMO

BACKGROUND: We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. MATERIAL AND METHODS: EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. RESULTS: Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. CONCLUSION: Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs.


Assuntos
Antioxidantes/metabolismo , Células Endoteliais/fisiologia , Células Endoteliais/efeitos da radiação , Inflamação/metabolismo , Inflamação/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Adesão Celular/fisiologia , Adesão Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Doses de Radiação
6.
Am J Pathol ; 181(4): 1271-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22867709

RESUMO

A differential responsiveness of patients to ionizing radiation is observed after preoperative radiotherapy for rectal adenocarcinoma that might be related, in part, to an apoptosis defect. To establish if proteins of the apoptotic cascades [pro-apoptotic: active caspase 3, 8, and 9 and DIABLO (direct inhibitor of apoptosis-binding protein with low pI); anti-apoptotic: XIAP (X-linked inhibitor of apoptosis)] are involved, we analyzed their profile in radioresistant (SW480) and radiosensitive (SW48) human colorectal cell lines. We demonstrated that, after irradiation, the SW48 cells increased the expression of the pro-apoptotic proteins, whereas the SW480 cells increased the expression of the anti-apoptotic protein XIAP. Moreover, XIAP knockdown in SW480 cells enhanced the basal and radiation-induced apoptotic index; the propensity of the SW480 cells to undergo apoptosis after radiation was higher compared with SW48 cells. In a translational study of 38 patients with rectal carcinoma, we analyzed the apoptotic profile for tumor and noncancerous tissue for each biopsy specimen using IHC. According to their response to preoperative radiotherapy, patients were classified into two groups: responsive and nonresponsive. Although no difference in expression of caspase 3, 8, or 9 was observed in the tumor/normal tissue ratio between responsive and nonresponsive patients, the ratio decreased for DIABLO and increased for XIAP. In conclusion, inhibition of XIAP rescues cellular radiosensitivity and both DIABLO and XIAP might be potential predictive markers of radiation responsiveness in rectal adenocarcinoma.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/radioterapia , Biomarcadores Tumorais/metabolismo , Tolerância a Radiação , Neoplasias Retais/metabolismo , Neoplasias Retais/radioterapia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mitocondriais/metabolismo , Prognóstico , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Neoplasias Retais/enzimologia , Neoplasias Retais/patologia
7.
Expert Opin Drug Discov ; 17(7): 733-754, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35593177

RESUMO

INTRODUCTION: Due to its unique functional impact on multiple cancer cell circuits including proliferation, apoptosis, tumor dissemination, DNA damage repair, and immune response, the inhibitor of apoptosis protein (IAP) survivin has gained high interest as a molecular target and a multitude of therapeutics were developed to interfere with survivin expression and functionality. First clinical evaluations of these therapeutics, however, were disappointing highlighting the need to develop advanced delivery systems of survivin-targeting therapeutics. AREAS COVERED: This review focuses on advancements in nanocarriers to molecularly target survivin in human malignancies. A plethora of nanoparticle platforms, including liposomes, polymeric systems, dendrimers, inorganic nanocarriers, RNA/DNA nanotechnology and exosomes, are discussed in the background of survivin-tailored RNA interference, small molecule inhibitors, dominant negative mutants or survivin vaccination or combined modality treatment with chemotherapeutic drugs and photo-dynamic/photothermal strategies. EXPERT OPINION: Novel therapeutic approaches include the use of biocompatible nanoformulations carrying gene silencing or drug molecules to directly or indirectly target proteins, allow for a more precise and controlled delivery of survivin therapeutics. Moreover, surface modification of these nanocarriers may result in a tumor entity-specific delivery. Therefore, nanomedicine exploiting survivin-tailored strategies in a multimodal background is considered the way forward to enhance the development of future personalized medicine.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Humanos , Nanomedicina , Nanotecnologia , Neoplasias/patologia , Survivina/uso terapêutico
8.
Cells ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497175

RESUMO

Glioblastoma (GBM) still presents as one of the most aggressive tumours in the brain, which despite enormous research efforts, remains incurable today. As many theories evolve around the persistent recurrence of this malignancy, the assumption of a small population of cells with a stem-like phenotype remains a key driver of its infiltrative nature. In this article, we research Chordin-like 1 (CHRDL1), a secreted protein, as a potential key regulator of the glioma stem-like cell (GSC) phenotype. It has been shown that CHRDL1 antagonizes the function of bone morphogenic protein 4 (BMP4), which induces GSC differentiation and, hence, reduces tumorigenicity. We, therefore, employed two previously described GSCs spheroid cultures and depleted them of CHRDL1 using the stable transduction of a CHRDL1-targeting shRNA. We show with in vitro cell-based assays (MTT, limiting dilution, and sphere formation assays), Western blots, irradiation procedures, and quantitative real-time PCR that the depletion of the secreted BMP4 antagonist CHRDL1 prominently decreases functional and molecular stemness traits resulting in enhanced radiation sensitivity. As a result, we postulate CHRDL1 as an enforcer of stemness in GSCs and find additional evidence that high CHRDL1 expression might also serve as a marker protein to determine BMP4 susceptibility.


Assuntos
Glioblastoma , Glioma , Humanos , Linhagem Celular Tumoral , Glioma/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/patologia
9.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428594

RESUMO

Introduction: After primary platinum-based chemoradiation of locally advanced uterine cervical cancer, a substantial proportion of women present with persistent, recurrent or metastatic disease, indicating an unmet need for biomarker development. Methods: We evaluated the clinical records of 69 cervical cancer patients (Federation of Gynecology and Obstetrics, FIGO Stage > IB3) who were subjected to definitive CRT. Immunohistochemical scoring of caspase-8, cyclin dependent kinase 9 (CDK9) and phosphorylated (phospho-)CDK9 (threonine (Thr) 186) was performed on pretreatment samples and correlated with the histopathological and clinical endpoints, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), cancer-specific survival (CSS) and overall survival (OS). Results: Lower levels of caspase-8 were more prevalent in patients with a higher T-stage (p = 0.002) and a higher FIGO stage (p = 0.003), and were significantly correlated with CDK9 expression (p = 0.018) and inversely with pCDK9 detection (p = 0.014). Increased caspase-8 levels corresponded to improved RFS (p = 0.005), DMFS (p = 0.038) and CSS (p = 0.017) in the univariate analyses. Low CDK9 expression was associated with worse RFS (p = 0.008), CSS (p = 0.015) and OS (p = 0.007), but not DMFS (p = 0.083), and remained a significant prognosticator for RFS (p = 0.003) and CSS (p = 0.009) in the multivariate analyses. Furthermore, low pCDK9 staining was significantly associated with superior RFS (p = 0.004) and DMFS (p = 0.001), and increased CSS (p = 0.022), and remained significant for these endpoints in the multivariate analyses. Conclusion: Increased caspase-8 and CDK9 levels correlate with improved disease-related outcomes in cervical cancer patients treated with CRT, whereas elevated pCDK9 levels predict worse survival in this patient population.

10.
J Gen Physiol ; 154(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35416945

RESUMO

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray-induced clustering of Orai1 and STIM1 and formation of a Ca2+ release-activated Ca2+ (CRAC) channel. A consequence of the x-ray-triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.


Assuntos
Cálcio , Leucócitos Mononucleares , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Imunidade , Leucócitos Mononucleares/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T/metabolismo , Raios X
11.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203348

RESUMO

Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.


Assuntos
Artrite Reumatoide , Radônio , Animais , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Sistema Imunitário/metabolismo , Interleucina-5 , Camundongos , Radônio/uso terapêutico
12.
Cancers (Basel) ; 13(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557398

RESUMO

Despite recent advances in the treatment of colorectal cancer (CRC), patient's individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.

13.
Front Oncol ; 11: 715031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395289

RESUMO

PURPOSE: Dexamethasone (Dex) is the most common corticosteroid to treat edema in glioblastoma (GBM) patients. Recent studies identified the addition of Dex to radiation therapy (RT) to be associated with poor survival. Independently, Tumor Treating Fields (TTFields) provides a novel anti-cancer modality for patients with primary and recurrent GBM. Whether Dex influences the efficacy of TTFields, however, remains elusive. METHODS: Human GBM cell lines MZ54 and U251 were treated with RT or TTFields in combination with Dex and the effects on cell counts and cell death were determined via flow cytometry. We further performed a retrospective analysis of GBM patients with TTFields treatment +/- concomitant Dex and analysed its impact on progression-free (PFS) and overall survival (OS). RESULTS: The addition of Dex significantly reduced the efficacy of RT in U251, but not in MZ54 cells. TTFields (200 kHz/250 kHz) induced massive cell death in both cell lines. Concomitant treatment of TTFields and Dex did not reduce the overall efficacy of TTFields. Further, in our retrospective clinical analysis, we found that the addition of Dex to TTFields therapy did not influence PFS nor OS. CONCLUSION: Our translational investigation indicates that the efficacy of TTFields therapy in patients with GBM and GBM cell lines is not affected by the addition of Dex.

14.
Cells ; 11(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011634

RESUMO

Anti-inflammatory effects of low-dose irradiation often follow a non-linear dose-effect relationship. These characteristics were also described for the modulation of leukocyte adhesion to endothelial cells. Previous results further revealed a contribution of reactive oxygen species (ROS) and anti-oxidative factors to a reduced leukocyte adhesion. Here, we evaluated the expression of anti-oxidative enzymes and the transcription factor Nrf2 (Nuclear factor-erythroid-2-related factor 2), intracellular ROS content, and leukocyte adhesion in primary human microvascular endothelial cells (HMVEC) upon low-dose irradiation under physiological laminar shear stress or static conditions after irradiation with X-ray or Carbon (C)-ions (0-2 Gy). Laminar conditions contributed to increased mRNA expression of anti-oxidative factors and reduced ROS in HMVEC following a 0.1 Gy X-ray and 0.5 Gy C-ion exposure, corresponding to reduced leukocyte adhesion and expression of adhesion molecules. By contrast, mRNA expression of anti-oxidative markers and adhesion molecules, ROS, and leukocyte adhesion were not altered by irradiation under static conditions. In conclusion, irradiation of endothelial cells with low doses under physiological laminar conditions modulates the mRNA expression of key factors of the anti-oxidative system, the intracellular ROS contents of which contribute at least in part to leucocyte adhesion, dependent on the radiation source.


Assuntos
Células Endoteliais/citologia , Leucócitos/citologia , Microvasos/citologia , Espécies Reativas de Oxigênio/metabolismo , Carbono , Adesão Celular/efeitos da radiação , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta à Radiação , Células Endoteliais/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Leucócitos/efeitos da radiação , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Raios X
15.
Cancer Res ; 81(9): 2304-2317, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408118

RESUMO

Substantial evidence has shown that overexpression of the inhibitor of apoptosis protein (IAP) survivin in human tumors correlates significantly with treatment resistance and poor patient prognosis. Survivin serves as a radiation resistance factor that impacts the DNA damage response by interacting with DNA-dependent protein kinase (DNA-PKcs). However, the complexity, molecular determinants, and functional consequences of this interrelationship remain largely unknown. By applying coimmunoprecipitation and flow cytometry-based Förster resonance energy transfer assays, we demonstrated a direct involvement of the survivin baculovirus IAP repeat domain in the regulation of radiation survival and DNA repair. This survivin-mediated activity required an interaction of residues S20 and W67 with the phosphoinositide 3-kinase (PI3K) domain of DNA-PKcs. In silico molecular docking and dynamics simulation analyses, in vitro kinase assays, and large-scale mass spectrometry suggested a heterotetrameric survivin-DNA-PKcs complex that results in a conformational change within the DNA-PKcs PI3K domain. Overexpression of survivin resulted in enhanced PI3K enzymatic activity and detection of differentially abundant phosphopeptides and proteins implicated in the DNA damage response. The survivin-DNA-PKcs interaction altered the S/T-hydrophobic motif substrate specificity of DNA-PKcs with a predominant usage of S/T-P phosphorylation sites and an increase of DNA-PKcs substrates including Foxo3. These data demonstrate that survivin differentially regulates DNA-PKcs-dependent radiation survival and DNA double-strand break repair via formation of a survivin-DNA-PKcs heterotetrameric complex. SIGNIFICANCE: These findings provide insight into survivin-mediated regulation of DNA-PKcs kinase and broaden our knowledge of the impact of survivin in modulating the cellular radiation response.See related commentary by Iliakis, p. 2270 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2304/F1.large.jpg.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais/genética , Survivina/metabolismo , Domínio Catalítico/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Especificidade por Substrato/genética , Survivina/genética , Transfecção
16.
Cells ; 9(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429458

RESUMO

NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed. Nek1 knockdown (KD) sensitized both cell lines to ionizing radiation following a single dose irradiation and more pronounced in combination with a 6 h fractionation (3 × 2 Gy) regime. For preclinical analyses we focused on cervical cancer. Nek1 shRNA HeLa cells were grafted into NOD/SCID/IL-2Rγc-/- (NSG) mice and Nek1 KD was induced by Dox-infused drinking water resulting in a significant cytostatic effect if combined with a 6 h fractionation (3 x 2 Gy) regime. In addition, we correlated Nek1 expression in biopsies of patients with cervical cancer with histopathological parameters and clinical follow-up. Our results indicate that elevated levels of Nek1 were associated with an increased rate of local or distant failure, as well as with impaired cancer-specific and overall survival in univariate analyses and for most endpoints in multivariable analyses. Finally, findings from The Cancer Genome Atlas (TCGA) validation cohort confirmed a significant association of high Nek1 expression with a reduced disease-free survival. In conclusion, we consider Nek1 to represent a novel biomarker and potential therapeutic target for drug development in the context of optimized fractionation intervals.


Assuntos
Fracionamento Celular/métodos , Terapia de Alvo Molecular , Quinase 1 Relacionada a NIMA/metabolismo , Tolerância a Radiação , Animais , Sobrevivência Celular , Células Clonais , Células HeLa , Histonas/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise Multivariada , Prognóstico , Resultado do Tratamento
17.
Cancers (Basel) ; 12(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357518

RESUMO

Survivin is a drug target and its suppressant YM155 a drug candidate mainly investigated for high-risk neuroblastoma. Findings from one YM155-adapted subline of the neuroblastoma cell line UKF-NB-3 had suggested that increased ABCB1 (mediates YM155 efflux) levels, decreased SLC35F2 (mediates YM155 uptake) levels, decreased survivin levels, and TP53 mutations indicate YM155 resistance. Here, the investigation of 10 additional YM155-adapted UKF-NB-3 sublines only confirmed the roles of ABCB1 and SLC35F2. However, cellular ABCB1 and SLC35F2 levels did not indicate YM155 sensitivity in YM155-naïve cells, as indicated by drug response data derived from the Cancer Therapeutics Response Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC) databases. Moreover, the resistant sublines were characterized by a remarkable heterogeneity. Only seven sublines developed on-target resistance as indicated by resistance to RNAi-mediated survivin depletion. The sublines also varied in their response to other anti-cancer drugs. In conclusion, cancer cell populations of limited intrinsic heterogeneity can develop various resistance phenotypes in response to treatment. Therefore, individualized therapies will require monitoring of cancer cell evolution in response to treatment. Moreover, biomarkers can indicate resistance formation in the acquired resistance setting, even when they are not predictive in the intrinsic resistance setting.

18.
Cancers (Basel) ; 11(4)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970642

RESUMO

Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca2+-permeable NMDARs in three glioblastoma cell lines. Therefore, we investigated the impact of this receptor on cell survival, migration and DNA double-strand break (DSB) repair in the presence of both, glutamate and NMDAR antagonists, and after clinically relevant doses of ionizing radiation. Our results indicate that treatment with NMDAR antagonists slowed the growth and migration of glutamate-releasing LN229 cells, suggesting that activation of NMDARs facilitate tumor expansion. Furthermore, we found that DSB-repair upon radiation was more effective in the presence of glutamate. In contrast, antagonizing the NMDAR or the Ca2+-dependent transcription factor CREB impaired DSB-repair similarly and resulted in a radiosensitizing effect in LN229 and U-87MG cells, indicating a common link between NMDAR signaling and CREB activity in glioblastoma. Since the FDA-approved NMDAR antagonists memantine and ifenprodil showed differential radiosensitizing effects, these compounds may constitute novel optimizations for therapeutic interventions in glioblastoma.

19.
Pharmaceutics ; 11(10)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548500

RESUMO

: Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide-co-glycolide) and polyethylene glycol-poly(d,l-lactide-co-glycolide) copolymers were compared. The particles ranged in size between 220 and 240 nm, with encapsulation efficiencies from 76.1 ± 1.7% to 69.1 ± 10.1%. A remarkable maximum drug load of approximately 9.0% was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface, transforming the nanospheres into theranostic devices, allowing their localization using magnetic resonance imaging. The manufacture of sorafenib-loaded nanoparticles alongside the functionalization of the particle surface with gadolinium complexes resulted in a highly efficacious nanodelivery system which exhibited a strong magnetic resonance imaging signal, optimal stability features, and a sustained release profile.

20.
Cancers (Basel) ; 11(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871073

RESUMO

Glioblastoma is one of the deadliest malignancies and is virtually incurable. Accumulating evidence indicates that a small population of cells with a stem-like phenotype is the major culprit of tumor recurrence. Enhanced DNA repair capacity and expression of stemness marker genes are the main characteristics of these cells. Elimination of this population might delay or prevent tumor recurrence following radiochemotherapy. The aim of this study was to analyze whether interference with the Hedgehog signaling (Hh) pathway or combined Hh/Notch blockade using small-molecule inhibitors can efficiently target these cancer stem cells and sensitize them to therapy. Using tumor sphere lines and primary patient-derived glioma cultures we demonstrate that the Hh pathway inhibitor GANT61 (GANT) and the arsenic trioxide (ATO)-mediated Hh/Notch inhibition are capable to synergistically induce cell death in combination with the natural anticancer agent (-)-Gossypol (Gos). Only ATO in combination with Gos also strongly decreased stemness marker expression and prevented sphere formation and recovery. These synergistic effects were associated with distinct proteomic changes indicating diminished DNA repair and markedly reduced stemness. Finally, using an organotypic brain slice transplantation model, we show that combined ATO/Gos treatment elicits strong growth inhibition or even complete elimination of tumors. Collectively, our data show for the first time that ATO and Gos, two drugs that can be used in the clinic, represent a promising targeted therapy approach for the synergistic elimination of glioma stem-like cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa