RESUMO
Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space when the mode frequency down-chirps. Results from the simulation with zonal flows agree quantitatively, for the first time, with experimental measurements of the fishbone saturation amplitude and energetic particle transport. Moreover, the fishbone-induced zonal flows are likely responsible for the formation of an internal transport barrier that was observed after fishbone bursts in this DIII-D experiment. Finally, gyrokinetic simulations of a related ITER baseline scenario show that the fishbone induces insignificant energetic particle redistribution and may enable high performance scenarios in ITER burning plasma experiments.
RESUMO
Global gyrokinetic simulations of mesoscale reversed shear Alfven eigenmodes (RSAE) excited by energetic particles (EP) in fusion plasmas find that RSAE amplitude and EP transport are much higher than experimental levels at nonlinear saturation, but quickly diminish to very low levels after the saturation if background microturbulence is artificially suppressed. In contrast, in simulations coupling micro-meso scales, the RSAE amplitude and EP transport decrease drastically at the initial saturation but later increases to the experimental levels in the quasisteady state with bursty dynamics due to regulation by thermal ion temperature gradient (ITG) microturbulence. The quasisteady state EP transport is larger for a stronger microturbulence. The RSAE amplitude in the quasisteady state ITG-RSAE turbulence from gyrokinetic simulations, for the first time, agrees very well with experimental measurements.
RESUMO
Fast-ion driven Alfvén waves with frequency close to the ion cyclotron frequency (f=0.58f_{ci}) excited by energetic ions from a neutral beam are stabilized via a controlled energetic ion density ramp for the first time in a fusion research plasma. The scaling of wave amplitude with injection rate is consistent with theory for single mode collisional saturation near marginal stability. The wave is identified as a shear-polarized global Alfvén eigenmode excited by Doppler-shifted cyclotron resonance with fast ions with sub-Alfvénic energetic ions, a first in fusion research plasmas.
RESUMO
A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvénic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in â¼0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature â³10 keV and high-ß plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfvén continuum caused by the compressibility of ions with reactor-relevant ion temperature.
RESUMO
Fast ion phase-space flow, driven by Alfvén eigenmodes (AEs), is measured by an imaging neutral particle analyzer in the DIII-D tokamak. The flow firstly appears near the minimum safety factor at the injection energy of neutral beams, and then moves radially inward and outward by gaining and losing energy, respectively. The flow trajectories in phase space align well with the intersection lines of the constant magnetic moment surfaces and constant E-(ω/n)P_{ζ} surfaces, where E, P_{ζ} are the energy and canonical toroidal momentum of ions; ω and n are angular frequencies and toroidal mode numbers of AEs. It is found that the flow is so destructive that the thermalization of fast ions is no longer observed in regions of strong interaction. The measured phase-space flow is consistent with nonlinear hybrid kinetic-magnetohydrodynamics simulation. Calculations of the relatively narrow phase-space islands reveal that fast ions must transition between different flow trajectories to experience large-scale phase-space transport.
RESUMO
DIII-D experiments at low density (n_{e}â¼10^{19} m^{-3}) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.
RESUMO
Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.
RESUMO
Here, we present the design and first calibration results of a new single-channel Fast-Ion D-Alpha (FIDA) spectrometer to be employed at the National Spherical Torus Experiment Upgrade (NSTX-U). The Czerny-Turner-type spectrometer uses a custom-designed aspherical lens setup instead of mirrors and achieves excellent spectral resolution, with high photon throughput through a round-to-linear fiber bundle, and camera frame rates around 8.4 kHz. The spectrometer uses a blocking bar to avoid saturation effects of the cold D-alpha emission line and will allow for detailed studies of the fast-ion confinement in NSTX-U. Expected synthetic spectra predicted with the TRANSP and FIDASIM codes show that the spectral range from 648.5 to 658 nm will sufficiently cover halo, the red-shifted beam emission, and the blue-shifted portion of FIDA emission in NSTX-U, which is sufficient for fast-ion transport studies of co-rotating fast ions.
RESUMO
A method for determining the fast-ion population density in magnetically confined plasmas as a function of pitch-radius, (λ, R), using a solid-state neutral-particle analyzer (ssNPA) signal and neutral-beam injection (NBI) power-output data has been developed. Oscillations in the NBI power output are replicated only in the active part of the ssNPA signal, allowing this to be separated from the passive and background signals, which usually complicate data from this diagnostic. Results obtained using this method are compared with those from standard techniques using data from the Mega-Amp Spherical Tokamak Upgrade spherical tokamak.
RESUMO
Linear gyrokinetic simulation of fusion plasmas finds a radial localization of the toroidal Alfvén eigenmodes (TAEs) due to the nonperturbative energetic particle (EP) contribution. The EP-driven TAE has a radial mode width much smaller than that predicted by the magnetohydrodynamic theory. The TAE radial position stays around the strongest EP pressure gradients when the EP profile evolves. The nonperturbative EP contribution is also the main cause for the breaking of the radial symmetry of the ballooning mode structure and for the dependence of the TAE frequency on the toroidal mode number. These phenomena are beyond the picture of the conventional magnetohydrodynamic theory.
RESUMO
The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/Bâ¼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.
RESUMO
We report the first observation of prompt neutral beam-ion losses due to nonresonant scattering induced by toroidal and reversed shear Alfvén eigenmodes in the DIII-D tokamak. The coherent losses are of full energy beam ions expelled from the plasma on their first poloidal orbit. The first-orbit loss mechanism causes enhanced, concentrated losses on the first wall exceeding nominal levels of prompt losses. The loss amplitude scales linearly with the mode amplitude. The data provide a novel and direct measure of the radial excursion or scatter of particles induced by individual modes and may shed light on the mechanism for the scattering of energetic particles in interstellar medium.
RESUMO
From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to other types of MHD activity.
RESUMO
A compact solid state neutral particle analyzer (SSNPA) diagnostic, previously installed at NSTX-U, has been moved to MAST-U and successfully operated in the first physics campaign (MU01). The SSNPA operates by detecting the flux of fast neutral particles produced by charge exchange (CX) reactions to diagnose the fast ion distribution. The diagnostic consists of three 16-channel sensors, which provide a radial view of the plasma and have a sightline intersection with the South-South neutral beam line. From this radial geometry, active CX signals from mostly trapped particles are observed. Each channel has a spatial resolution of 3-4 cm, a temporal resolution of 200 kHz, and an average pitch angle resolution of a few degrees. The three-sensor configuration allows for coarse energy resolution of the CX signals; each sensor sees similar sightlines but different filter thicknesses alter the energy cutoffs by known amounts. Experimental data show that all channels are collecting data as intended. The signal to noise ratio is typically around 15. Preliminary data analysis shows a correlation between the SSNPA signal and magnetohydrodynamic activity in the plasma as expected.
RESUMO
Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.
RESUMO
A new technique to attenuate the unshifted deuterium Balmer-alpha (D-alpha) emission is developed and tested for the fast ion D-alpha (FIDA) diagnostic. The unshifted D-alpha emission, at λ = 656.1 nm, is around three orders of magnitude higher than the desired FIDA emission. Blocking the strong emission feature is essential to prevent blooming and light smearing on the CCD chip and scattered light contamination. The new method is a notch filter approach that utilizes the reflection from ultra-narrow bandpass filters to block the saturating signal before it enters the spectrometer. Collimated light from the fibers is reflected off the filter at a 15° angle of incidence. Measurements show that a center wavelength transmission of 0.006 and a blocking full width at half maximum of â¼1 nm are achieved by using a 200 µm fiber and a 20 mm focal length collimator with two filters.
RESUMO
The ion cyclotron emission diagnostic on the DIII-D tokamak comprises seven single-turn loops that measure high-frequency (1-100 MHz) magnetic field fluctuations that are often excited by energetic particles in the plasma. The raw voltage signals induced in the loops in response to these fluctuations travel through a series of cables, isolation transformer DC blocks, low-pass filters, and finally a digitizer before being analyzed in frequency space. The diagnostic has been recently upgraded, most notably to include four additional graphite tile loops and a new eight-channel digitizer. The previous three loops are all on the low-field side of the tokamak. The measurement capabilities of the system have been expanded by the addition of a new horizontally oriented loop on the low-field side, an additional toroidal loop on the low-field side, and two toroidal loops on the high-field side. These loops will be used to provide approximate mode polarization, improved toroidal mode number calculations, and information on modes in inward-shifted plasmas, respectively.
RESUMO
An Imaging Fast Ion D-alpha (IFIDA) diagnostic, characterized by a high optical spatial resolution of ≤2 mm for accurate validation of energetic particle (EP) transport models, has been developed on DIII-D. The diagnostic provides a 2D image in the radial-poloidal plane of the FIDA signal generated by EP emission after charge exchange with an injected neutral beam. A narrow passband filter integrates the FIDA signal in the spectral region of 650-652 nm (blue-shifted FIDA tail), which is mostly generated by co-passing EPs of energies E ≃ 40-80 keV. A beam modulation technique is employed to estimate the active component of the signal, which is then used to compute EP profiles and gradients with a higher accuracy than the standard spectroscopic FIDA diagnostic. The current diagnostic time resolution is ≃3 ms. In this work, the IFIDA diagnostic design is explained and data are compared with the spectroscopic FIDA diagnostic, which shares the same viewing geometry, to assess the improvements in EP profile reconstruction.
RESUMO
Radially resolved hydrogenic isotope fraction measurement capabilities have been developed for DIII-D using the main-ion charge exchange recombination (MICER) spectroscopy system in preparation for mixed hydrogen and deuterium experiments. Constraints on the hydrogenic ion temperatures and velocities based on measurements of the impurity ion properties are required to accurately fit the spectrum. Corrections for cross sectional distortions, spatial smearing due to the halo, and a neoclassical offset between the impurity and hydrogenic toroidal rotation are applied to the constraints prior to fitting the MICER spectrum. Extensive atomic physics calculations have been performed using the FIDASIM code, which has recently been improved to allow simulations using mixtures of hydrogenic species. These results demonstrate that for the same plasma parameters, the Dα emission is 20%-30% brighter than Hα due to differences in rate coefficients associated with the different ion thermal velocities for the same temperature and therefore must be taken into consideration when calculating absolute densities. However, despite these differences, the absolute error when estimating the hydrogen isotope fraction [nH/(nH + nD)] by using the Hα radiance fraction [LHα/(LHα + LDα)] is typically less than 5% due to the way the fraction is formed, making the radiance fraction a reasonably accurate estimate of the isotope fraction for most cases.
RESUMO
Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D(alpha), neutron, and motional Stark effect measurements diagnose the fast-ion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy, and at larger minor radius. Theoretical estimates of fast-ion diffusion are comparable to experimental levels.