Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 299(1): F99-F111, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375117

RESUMO

Previous work identified an important role for hyperglycemia in diabetic nephropathy (The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977-986, 1993; UK Prospective Diabetes Study Group. Lancet 352: 837-853, 1998), and increased glomerular GLUT1 has been implicated. However, the roles of GLUT1 and intracellular glucose have not been determined. Here, we developed transgenic GLUT1-overexpressing mice (GT1S) to characterize the roles of GLUT1 and intracellular glucose in the development of glomerular disease without diabetes. GLUT1 was overexpressed in glomerular mesangial cells (MC) of C57BL6 mice, a line relatively resistant to diabetic nephropathy. Blood pressure, blood glucose, glomerular morphometry, matrix proteins, cell signaling, transcription factors, and selected growth factors were examined. Kidneys of GT1S mice overexpressed GLUT1 in glomerular MCs and small vessels, rather than renal tubules. GT1S mice were neither diabetic nor hypertensive. Glomerular GLUT1, glucose uptake, mean capillary diameter, and mean glomerular volume were all increased in the GT1S mice. Moderately severe glomerulosclerosis (GS) was established by 26 wk of age in GT1S mice, with increased glomerular type IV collagen and fibronectin. Modest increases in glomerular basement membrane thickness and albuminuria were detected with podocyte foot processes largely preserved, in the absence of podocyte GLUT1 overexpression. Activation of glomerular PKC, along with increased transforming growth factor-beta1, VEGFR1, VEGFR2, and VEGF were all detected in glomeruli of GT1S mice, likely contributing to GS. The transcription factor NF-kappaB was also activated. Overexpression of glomerular GLUT1, mimicking the diabetic GLUT1 response, produced numerous features typical of diabetic glomerular disease, without diabetes or hypertension. This suggested GLUT1 may play an important role in the development of diabetic GS.


Assuntos
Nefropatias Diabéticas/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glomérulos Renais/metabolismo , Envelhecimento , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Glicemia/metabolismo , Pressão Sanguínea , Células Cultivadas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Membrana Basal Glomerular/metabolismo , Mesângio Glomerular/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Podócitos/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Lab Invest ; 90(1): 83-97, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19918242

RESUMO

Reduced nephron numbers may predispose to renal failure. We hypothesized that glucose transporters (GLUTs) may contribute to progression of the renal disease, as GLUTs have been implicated in diabetic glomerulosclerosis and hypertensive renal disease with mesangial cell (MC) stretch. The Os (oligosyndactyly) allele that typically reduces nephron number by approximately 50%, was repeatedly backcrossed from ROP (Ra/+ (ragged), Os/+ (oligosyndactyly), and Pt/+ (pintail)) Os/+ mice more than six times into the Fvb mouse background to obtain Os/+ and +/+ mice with the Fvb background for study. Glomerular function, GLUT1, signaling, albumin excretion, and structural and ultrastructural changes were assessed. The FvbROP Os/+ mice (Fvb background) exhibited increased glomerular GLUT1, glucose uptake, VEGF, glomerular hypertrophy, hyperfiltration, extensive podocyte foot process effacement, marked albuminuria, severe extracellular matrix (ECM) protein deposition, and rapidly progressive renal failure leading to their early demise. Glomerular GLUT1 was increased 2.7-fold in the FvbROP Os/+ mice vs controls at 4 weeks of age, and glucose uptake was increased 2.7-fold. These changes were associated with the activation of glomerular PKCbeta1 and NF-kappaB p50 which contribute to ECM accumulation. The cyclic mechanical stretch of MCs in vitro, used as a model for increased MC stretch in vivo, reproduced increased GLUT1 at 48 h, a stimulus for increased VEGF expression which followed at 72 h. VEGF was also shown to act in a positive feedback manner on MC GLUT1, increasing GLUT1 expression, glucose uptake and fibronectin (FN) accumulation in vitro, whereas antisense suppression of GLUT1 largely blocked FN upregulation by VEGF. The FvbROP Os/+ mice exhibited an early increase in glomerular GLUT1 leading to increased glomerular glucose uptake PKCbeta1, and NF-kappaB activation, with excess ECM accumulation. A GLUT1-VEGF-GLUT1 positive feedback loop may play a key role in contributing to renal disease in this model of nondiabetic glomerulosclerosis.


Assuntos
Albuminúria/etiologia , Transportador de Glucose Tipo 1/metabolismo , Camundongos Mutantes/metabolismo , Néfrons/anormalidades , Insuficiência Renal/etiologia , Insuficiência Renal/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alelos , Animais , Células Cultivadas , Creatinina/metabolismo , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Imuno-Histoquímica , Isoenzimas/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Rim/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Microscopia Eletrônica , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Estresse Mecânico , Sindactilia/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 100(26): 15613-8, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14673082

RESUMO

The hyperglycemia of maternal diabetes suppresses the glucose transporter-1 (GLUT1) facilitative glucose transporter 49-66% in preimplantation embryos. Glucose uptake is reduced and apoptosis is activated. We hypothesized that the reduction of embryonic GLUT1 may play a key role in the malformations of diabetic embryopathy. Therefore, we produced GLUT1-deficient transgenic mice [i.e., antisense-GLUT1 (GT1AS)] to determine whether GLUT1 deficiency alone could reproduce the growth defects. Early cell division of fertilized mouse eggs injected with GT1AS was markedly impaired, P < 0.001 vs. controls. Two populations of preimplantation embryos obtained from GT1AS x GT1AS heterozygote matings exhibited reduction of the 2-deoxyglucose uptake rate: one by 50% (presumed heterozygotes, P < 0.001 vs. control) and the other by 95% (presumed homozygotes, P < 0.001 vs. heterozygotes). Embryonic GLUT1 deficiency in the range reported with maternal diabetes was associated with growth retardation and developmental malformations similar to those described in diabetes-exposed embryos: intrauterine growth retardation (31.1%), caudal regression (9.8%), anencephaly with absence of the head (6.6%), microphthalmia (4.9%), and micrognathia (1.6%). Reduced body weight (small embryos, <70% of the nontransgenic body weight) was accompanied by other malformations and a 56% reduction of GLUT1 protein, P < 0.001 vs. nonsmall embryos (body weight >or=70% normal). The heart, brain, and kidneys of embryonic day 18.5 GT1AS embryos exhibited 24-51% reductions of GLUT1 protein. The homozygous GT1AS genotype was lethal during gestation. Reduced embryonic GLUT1 was associated with the appearance of apoptosis. Therefore, GLUT1 deficiency may play a role in producing embryonic malformations resulting from the hyperglycemia of maternal diabetes. Late gestational macrosomia was absent, apparently requiring a different mechanism.


Assuntos
Anormalidades Congênitas/genética , Diabetes Mellitus/embriologia , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Animais , Transporte Biológico , Cruzamentos Genéticos , DNA Antissenso/genética , Desoxiglucose/farmacocinética , Diabetes Mellitus/genética , Feminino , Transportador de Glucose Tipo 1 , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , beta-Galactosidase/genética
4.
Am J Pathol ; 163(5): 1873-85, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14578187

RESUMO

Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1+/-) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(-/-) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(+/+) and GT1(+/-) embryonic stem cells. GT1(+/-) demonstrated 49 +/- 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 +/- 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(+/-). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(+/-), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(+/-) than in GT1(+/+) controls. Caspase-3 activity was 76% higher in GT1(+/-) versus GT1(+/+) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses.


Assuntos
Proteínas de Transporte de Monossacarídeos/deficiência , Células-Tronco/patologia , Células-Tronco/fisiologia , Animais , Apoptose/genética , Northern Blotting , Caspase 3 , Caspases/metabolismo , Hipóxia Celular , Linhagem Celular , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Transportador de Glucose Tipo 1 , Haplótipos , Heterozigoto , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Fosforilação Oxidativa/efeitos dos fármacos , Azida Sódica/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa