Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 186(11): 2392-2409.e21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37164012

RESUMO

T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).


Assuntos
Vacina BNT162 , COVID-19 , Animais , Cricetinae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Epitopos , SARS-CoV-2/genética
2.
Nature ; 592(7853): 283-289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524990

RESUMO

A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Envelhecimento/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Linhagem Celular , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunização Passiva , Internacionalidade , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Multimerização Proteica , RNA Viral/análise , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Soroterapia para COVID-19 , Vacinas de mRNA
3.
J Med Genet ; 59(5): 511-516, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34183358

RESUMO

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação ao GTP/genética , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sequenciamento do Exoma
4.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672678

RESUMO

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Telomerase/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Telomerase/genética
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142246

RESUMO

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Assuntos
Cloridrato de Fingolimode , Células de Schwann , Becaplermina/metabolismo , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Regeneração Nervosa/fisiologia , Fenótipo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Células de Schwann/metabolismo , Receptores de Esfingosina-1-Fosfato
6.
Basic Res Cardiol ; 116(1): 8, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544211

RESUMO

Conditional, cell-type-specific transgenic mouse lines are of high value in cardiovascular research. A standard tool for cardiomyocyte-restricted DNA editing is the αMHC-MerCreMer/loxP system. However, there is an ongoing debate on the occurrence of cardiac side effects caused by unspecific Cre activity or related to tamoxifen/oil overload. Here, we investigated potential adverse effects of DNA editing by the αMHC-MerCreMer/loxP system in combination with a low-dose treatment protocol with the tamoxifen metabolite 4-hydroxytamoxifen (OH-Txf). αMHC-MerCreMer mice received intraperitoneally OH-Txf (20 mg/kg) for 5 or 10 days. These treatment protocols were highly efficient to induce DNA editing in adult mouse hearts. Multi-parametric magnetic resonance imaging revealed neither transient nor permanent effects on cardiac function during or up to 19 days after 5 day OH-Txf treatment. Furthermore, OH-Txf did not affect cardiac phosphocreatine/ATP ratios assessed by in vivo 31P MR spectroscopy, indicating no Cre-mediated side effects on cardiac energy status. No MRI-based indication for the development of cardiac fibrosis was found as mean T1 relaxation time was unchanged. Histological analysis of myocardial collagen III content after OH-Txf confirmed this result. Last, mean T2 relaxation time was not altered after Txf treatment suggesting no pronounced cardiac lipid accumulation or tissue oedema. In additional experiments, cardiac function was assessed for up to 42 days to investigate potential delayed side effects of OH-Txf treatment. Neither 5- nor 10-day treatment resulted in a depression of cardiac function. Efficient cardiomyocyte-restricted DNA editing that is free of unwanted side effects on cardiac function, energetics or fibrosis can be achieved in adult mice when the αMHC-MerCreMer/loxP system is activated by the tamoxifen metabolite OH-Txf.


Assuntos
Edição de Genes , Integrases/genética , Miócitos Cardíacos/efeitos dos fármacos , Tamoxifeno/análogos & derivados , Animais , Metabolismo Energético/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/toxicidade , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Circ Res ; 124(10): 1433-1447, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30916618

RESUMO

RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.


Assuntos
Matriz Extracelular/fisiologia , Hialuronan Sintases/deficiência , Ácido Hialurônico/biossíntese , Macrófagos/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Apoptose , Comunicação Celular/fisiologia , Sobrevivência Celular , Microambiente Celular/fisiologia , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia
8.
Anesth Analg ; 132(1): 253-260, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889843

RESUMO

BACKGROUND: Cardioprotective interventions-such as pharmacological postconditioning-are a promising strategy to reduce deleterious consequences of ischemia and reperfusion injury (I/RI) in the heart, especially as timing and onset of myocardial infarction are unpredictable. Pharmacological postconditioning by treatment with dexmedetomidine (Dex), an α2-adrenoreceptor agonist, during reperfusion protects hearts from I/RI, independently of time point and duration of application during the reperfusion phase. The mitochondrial ATP-sensitive K (mKATP) and mitochondrial large-conductance calcium-sensitive potassium channel (mBKCa) play a pivotal role in mediating this cardioprotective effect. Therefore, we investigated whether Dex-induced cardioprotection during early or late reperfusion is mediated variously by these mitochondrial K-channels. METHODS: Hearts of male Wistar rats were randomized into 8 groups and underwent a protocol of 15 minutes adaption, 33 minutes ischemia, and 60 minutes reperfusion in an in vitro Langendorff-system. A 10-minute treatment phase was started directly (first subgroup, early reperfusion) or 30 minutes (second subgroup, late reperfusion) after the onset of reperfusion. Control (Con) hearts received vehicle only. In the first subgroup, hearts were treated with 3 nM Dex, 100 µM mKATP-channel blocker 5-hydroxydecanoate (5HD) or 1 µM mBKCa-channel blocker Paxilline (Pax) alone or with respective combinations (5HD + Dex, Pax + Dex). Hearts of the second subgroup received Dex alone (Dex30') or in combination with the respective blockers (5HD + Dex30', Pax + Dex30'). Infarct size was determined with triphenyltetrazoliumchloride staining. Hemodynamic variables were recorded during the whole experiment. RESULTS: During early reperfusion (first subgroup), the infarct size reducing effect of Dex (Con: 57% ± 9%, Dex: 31% ± 7%; P< .0001 versus Con) was completely abolished by 5HD and Pax (52% ± 6%; Pax + Dex: 53% ± 4%; each P< .0001 versus Dex), while both blockers alone had no effect on infarct size (5HD: 54% ± 8%, Pax: 53% ± 11%). During late reperfusion (second subgroup) the protective effect of Dex (Dex30': 33% ± 10%, P< .0001 versus Con) was fully abrogated by Pax (Pax + Dex30': 58% ± 7%, P < .0001 versus Dex30'), whereas 5HD did not block cardioprotection (5HD + Dex30': 36% ± 7%). Between groups and within each group throughout reperfusion no significant differences in hemodynamic variables were detected. CONCLUSIONS: Cardioprotection by treatment with Dex during early reperfusion seems to be mediated by both mitochondrial K-channels, whereas during late reperfusion only mBKCa-channels are involved.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Cardiotônicos/uso terapêutico , Dexmedetomidina/uso terapêutico , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Canais de Potássio/agonistas , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Cardiotônicos/farmacologia , Dexmedetomidina/farmacologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Canais de Potássio/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
9.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926009

RESUMO

Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3-10 µM) for 10 min at the onset of reperfusion, in order to investigate a concentration-response relationship. In the second set of experiments (2), 0.3 µM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.


Assuntos
Ciclosporina/farmacologia , Hiperglicemia/tratamento farmacológico , Simendana/farmacologia , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiologia , Hiperglicemia/complicações , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445586

RESUMO

Remote ischemic preconditioning (RIPC) protects hearts from ischemia-reperfusion (I/R) injury in experimental studies; however, clinical RIPC trials were unsatisfactory. This discrepancy could be caused by a loss of cardioprotection due to comorbidities in patients, including diabetes mellitus (DM) and hyperglycemia (HG). RIPC is discussed to confer protective properties by release of different humoral factors activating cardioprotective signaling cascades. Therefore, we investigated whether DM type 1 and/or HG (1) inhibit the release of humoral factors after RIPC and/or (2) block the cardioprotective effect directly at the myocardium. Experiments were performed on male Wistar rats. Animals in part 1 of the study were either healthy normoglycemic (NG), type 1 diabetic (DM1), or hyperglycemic (HG). RIPC was implemented by four cycles of 5 min bilateral hind-limb ischemia/reperfusion. Control (Con) animals were not treated. Blood plasma taken in vivo was further investigated in isolated rat hearts in vitro. Plasma from diseased animals (DM1 or HG) was administered onto healthy (NG) hearts for 10 min before 33 min of global ischemia and 60 min of reperfusion. Part 2 of the study was performed vice versa-plasma taken in vivo, with or without RIPC, from healthy rats was transferred to DM1 and HG hearts in vitro. Infarct size was determined by TTC staining. Part 1: RIPC plasma from NG (NG Con: 49 ± 8% vs. NG RIPC 29 ± 6%; p < 0.05) and DM1 animals (DM1 Con: 47 ± 7% vs. DM1 RIPC: 38 ± 7%; p < 0.05) reduced infarct size. Interestingly, transfer of HG plasma showed comparable infarct sizes independent of prior treatment (HG Con: 34 ± 9% vs. HG RIPC 35 ± 9%; ns). Part 2: No infarct size reduction was detectable when transferring RIPC plasma from healthy rats to DM1 (DM1 Con: 54 ± 13% vs. DM1 RIPC 53 ± 10%; ns) or HG hearts (HG Con: 60 ± 16% vs. HG RIPC 53 ± 14%; ns). These results suggest that: (1) RIPC under NG and DM1 induces the release of humoral factors with cardioprotective impact, (2) HG plasma might own cardioprotective properties, and (3) RIPC does not confer cardioprotection in DM1 and HG myocardium.


Assuntos
Cardiotônicos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Hiperglicemia/complicações , Imunidade Humoral , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar , Transdução de Sinais
11.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830353

RESUMO

The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG-as possible targets of known protective signaling cascades-are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Manitol/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptor A1 de Adenosina/genética , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Coração/efeitos dos fármacos , Coração/fisiopatologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Precondicionamento Isquêmico Miocárdico , Canais KATP/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Receptor A1 de Adenosina/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Xantinas/farmacologia
12.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673646

RESUMO

Cardiac preconditioning (PC) and postconditioning (PoC) are powerful measures against the consequences of myocardial ischemia and reperfusion (I/R) injury. Mannitol-a hyperosmolar solution-is clinically used for treatment of intracranial and intraocular pressure or promotion of diuresis in renal failure. Next to these clinical indications, different organ-protective properties-e.g., perioperative neuroprotection-are described. However, whether Mannitol also confers cardioprotection via a pre- and/or postconditioning stimulus, possibly reducing consequences of I/R injury, remains to be seen. Therefore, in the present study we investigated whether (1) Mannitol-induced pre- and/or postconditioning induces myocardial infarct size reduction and (2) activation of mitochondrial ATP-sensitive potassium (mKATP) channels is involved in cardioprotection by Mannitol. Experiments were performed on isolated hearts of male Wistar rats via a pressure controlled Langendorff system, randomized into 7 groups. Each heart underwent 33 min of global ischemia and 60 min of reperfusion. Control hearts (Con) received Krebs-Henseleit buffer as vehicle only. Pre- and postconditioning was achieved by administration of 11 mmol/L Mannitol for 10 min before ischemia (Man-PC) or immediately at the onset of reperfusion (Man-PoC), respectively. In further groups, the mKATP channel blocker 5HD, was applied with and without Mannitol, to determine the potential underlying cardioprotective mechanisms. Primary endpoint was infarct size, determined by triphenyltetrazolium chloride staining. Mannitol significantly reduced infarct size both as a pre- (Man-PC) and postconditioning (Man-PoC) stimulus compared to control hearts (Man-PC: 31 ± 4%; Man-PoC: 35 ± 6%, each p < 0.05 vs. Con: 57 ± 9%). The mKATP channel inhibitor completely abrogated the cardioprotective effect of Mannitol-induced pre- (5HD-PC-Man-PC: 59 ± 8%, p < 0.05 vs. Man-PC) and postconditioning (5HD-PoC-Man-PoC: 59 ± 10% vs. p < 0.05 Man-PoC). Infarct size was not influenced by 5HD itself (5HD-PC: 60 ± 14%; 5HD-PoC: 54 ± 14%, each ns vs. Con). This study demonstrates that Mannitol (1) induces myocardial pre- and postconditioning and (2) confers cardioprotection via activation of mKATP channels.


Assuntos
Cardiotônicos , Precondicionamento Isquêmico Miocárdico , Manitol , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Canais de Potássio , Animais , Masculino , Ratos , Cardiotônicos/farmacologia , Diuréticos Osmóticos/farmacologia , Precondicionamento Isquêmico Miocárdico/métodos , Manitol/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Canais de Potássio/metabolismo , Distribuição Aleatória , Ratos Wistar
13.
FASEB J ; 33(4): 4703-4715, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592632

RESUMO

Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.


Assuntos
Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Proteínas Smad/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida , Biologia Computacional , Cloridrato de Fingolimode/farmacologia , Organofosfatos/farmacologia , Ratos , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Smad/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Espectrometria de Massas em Tandem , Ácido Tricloroacético/química
14.
J Cardiovasc Pharmacol ; 76(6): 684-691, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002964

RESUMO

Ischemic preconditioning and postconditioning are strong measures preserving the heart against ischemia-reperfusion injury in experimental setting but are too invasive and impractical for clinical routine. The cardioprotective effects of ischemic preconditioning and postconditioning can be imitated pharmacologically, for example, with the phosphodiesterase inhibitors sildenafil and milrinone. We hypothesize that sildenafil-induced preconditioning is concentration dependent and further that a combined treatment of "nonprotective" versus "protective" concentrations of sildenafil and milrinone leads to a significant infarct size reduction. Experiments were performed on isolated hearts of male Wistar rats, randomized into 12 groups, mounted onto a Langendorff system, and perfused with Krebs-Henseleit buffer. All hearts underwent 33 minutes ischemia and 60 minutes of reperfusion. For determination of a concentration-dependent effect of sildenafil, hearts were perfused with increasing concentrations of sildenafil (0.1-1 µM) over 10 minutes before ischemia. In a second series of experiments, hearts were treated with 0.3 µM sildenafil or 1 µM milrinone as the "protective" concentrations. A higher concentration of respective drugs did not further reduce infarct size. In addition, a combination of "protective" and "nonprotective" concentrations of sildenafil and milrinone was applied. Sildenafil and milrinone in lower concentrations led to significant infarct size reduction, whereas combining both substances in cardioprotective concentrations did not enhance this effect. Sildenafil in a concentration of 0.3 µM induces myocardial protection. Furthermore, treatment with sildenafil and milrinone in lower concentrations had an equally strong cardioprotective effect regarding infarct size reduction compared with the administration of "protective" concentrations.


Assuntos
Milrinona/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Hemodinâmica/efeitos dos fármacos , Preparação de Coração Isolado , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos
15.
Mol Biol Rep ; 47(9): 6669-6677, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789575

RESUMO

Isoflurane (Iso) preconditioning (PC) is known to be cardioprotective against ischemia/reperfusion (I/R) injury. It was previously shown that microRNA-21-5p (miR-21-5p) is regulated by Iso-PC. It is unclear, if expression of cardiac enriched miR-1-3p is also affected by Iso-PC, and associated with activation of HIF1α (hypoxia-inducible factor 1-alpha).  Male Wistar rats (n = 6-8) were randomly assigned to treatment with or without 1 MAC Iso for 30 min, followed by 25 min of regional myocardial ischemia, with 120 min reperfusion. At the end of reperfusion, myocardial expression of miR-1-3p, miR-21-5p and mRNAs of two HIF-1α-dependent genes, VEGF (vascular endothelial growth factor) and HO-1 (heme oxygenase-1), were determined by quantitative PCR. Protein expression of a miR-21 target gene, PDCD4 (programmed cell death protein 4), was assessed by western blot analysis. Infarct sizes were analyzed with triphenyltetrazoliumchloride staining. MiR-21-5p expression was increased by Iso, whereas expression of miR-1-3p was not altered. The expression of VEGF but not HO-1 was induced by Iso. Iso-PC reduced infarct sizes compared to untreated controls. No regulation of miRNA and mRNA expression was detected after I/R. PDCD4 protein expression was not affected after Iso exposure. Expression of miR-21-5p, in contrast to miR-1-3p, is altered during this early time point of Iso-PC. HIF1α signaling seems to be involved in miR-21-5p regulation.


Assuntos
Isoflurano/farmacologia , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Precondicionamento Isquêmico , Isoflurano/análogos & derivados , Masculino , MicroRNAs/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Cardiovasc Drugs Ther ; 34(3): 303-310, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236860

RESUMO

PURPOSE: The melatonin receptor (MT) agonist ramelteon has a higher affinity to MT1 than for MT2 receptors and induces cardioprotection by involvement of mitochondrial potassium channels. Activation of mitochondrial potassium channels leads to release of free radicals. We investigated whether (1) ramelteon-induced cardioprotection is MT2 receptor specific and (2) if free radicals are involved in ramelteon-induced cardioprotection. METHODS: Hearts of male Wistar rats were randomized, placed on a Langendorff system, and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia hearts were perfused with ramelteon (Ram) with or without the MT2 receptor inhibitor 4-phenyl-2-propionamidotetralin (4P-PDOT+Ram, 4P-PDOT). In subsequent experiments, ramelteon was administered together with the radical oxygen species (ROS) scavenger N-2-mercaptopropionylglycine (MPG+Ram). To determine whether the blockade of ramelteon-induced cardioprotection can be restored, we combined ramelteon and MPG with mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A (CsA) at different time points. Infarct size was determined by triphenyltetrazolium chloride (TTC) staining. RESULTS: Ramelteon-induced infarct size reduction was completely blocked by 4P-PDOT and MPG. Ramelteon and MPG combined with CsA before ischemia were not cardioprotective but CsA at the onset of reperfusion could restore infarct size reduction. CONCLUSIONS: This study shows for the first time that despite the higher affinity to MT1 receptors, (1) ramelteon-induced cardioprotection involves MT2 receptors, (2) cardioprotection requires ROS release, and (3) inhibition of the mPTP can restore infarct size reduction.


Assuntos
Fármacos Cardiovasculares/farmacologia , Indenos/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor MT2 de Melatonina/agonistas , Animais , Modelos Animais de Doenças , Preparação de Coração Isolado , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos
17.
Anesth Analg ; 130(1): 90-98, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633505

RESUMO

BACKGROUND: Timing and onset of myocardial ischemia are mostly unpredictable. Therefore, postconditioning could be an effective cardioprotective intervention. Because ischemic postconditioning is an invasive and not practicable treatment, pharmacological postconditioning would be a more suitable alternative cardioprotective measure. For the α2-adrenoreceptor agonist, dexmedetomidine postconditioning has been shown. However, data on a concentration-dependent effect of dexmedetomidine are lacking. Furthermore, it is unclear whether the time point and/or duration of dexmedetomidine administration in the reperfusion period is of relevance. We set out to determine whether infarct size reduction by dexmedetomidine is concentration dependent and whether time point and/or duration of dexmedetomidine application has an impact on the effect size of cardio protection. METHODS: Hearts of male Wistar rats were randomized and placed on a Langendorff system perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. In part I of the study, a concentration-response effect was determined by perfusing hearts with various concentrations of dexmedetomidine (0.3-100 nM) at the onset of reperfusion. Based on these results, part II of the study was conducted with 3 nM dexmedetomidine. Application of dexmedetomidine started directly at the onset of reperfusion (Dex60) and 15 minutes (Dex15), 30 minutes (Dex30), or 45 minutes (Dex45) after the start of reperfusion and lasted always until the end of the reperfusion period. Infarct size was determined by triphenyltetrazolium chloride staining. RESULTS: In part I, infarct size in control (Con) hearts was 62% ± 4%. Three-nanometer dexmedetomidine was the lowest most effective cardioprotective concentration and reduced infarct size to 24% ± 7% (P < .0001 versus Con). Higher concentrations did not confer stronger protection. Infarct size in control hearts from part II was 66% ± 6%. Different starting times and/or durations of application resulted in similar infarct size reduction (all P < .0001 versus Con). CONCLUSIONS: Postconditioning by dexmedetomidine is concentration dependent in ranges between 0.3 and 3 nM. Increased concentrations above 3 nM do not further enhance this cardioprotective effect. This cardioprotective effect is independent of time point and length of application in the reperfusion period.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Dexmedetomidina/administração & dosagem , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Preparação de Coração Isolado , Masculino , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Ratos Wistar , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
18.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528085

RESUMO

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Assuntos
Fator de Crescimento Insulin-Like I/uso terapêutico , Células Mieloides/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Animais , Ecocardiografia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
19.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276406

RESUMO

Ramelteon is a Melatonin 1 (MT1)-and Melatonin 2 (MT2)-receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Indenos/farmacologia , Precondicionamento Isquêmico Miocárdico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos/farmacologia , Masculino , Infarto do Miocárdio , Miocárdio/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
20.
Crit Care Med ; 47(3): e250-e255, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30608281

RESUMO

OBJECTIVES: Remote ischemic preconditioning (RIPC) is a practicable and noninvasive method to protect the heart against ischemia reperfusion injury. Unfortunately results from clinical studies are not convincing. Propofol is suggested to be an inhibiting factor of cardioprotection by RIPC, but the underlying mechanism is still unknown. We investigated whether after RIPC the release of humoral factors and/or the direct cardioprotective effect at the myocardium is inhibited by propofol. DESIGN: Randomized, prospective, blinded laboratory investigation. SETTING: Experimental laboratory. PATIENTS/SUBJECTS: Male Wistar rats. INTERVENTIONS: Repetitive hind limb ischemia in rats-blood plasma transfers to isolated rat heart. MEASUREMENTS AND MAIN RESULTS: In male Wistar rats (six groups, each n = 6/group), RIPC was induced by four cycles of 5 minutes bilateral hind limb ischemia alternately with 5 minutes of reperfusion. Blood samples were taken with (RIPC) and without RIPC (Con). Rats received continuous anesthesia with pentobarbital (Pento, 40 mg/kg body weight/hr) or propofol (Prop, 12 mg/kg body weight/hr), respectively. Cardioprotective properties of the blood plasma was investigated in the rat heart in vitro (six groups, each n = 6/group) perfused with Krebs-Henseleit buffer alone or with propofol (10 µM). Plasma was administered over 10 minutes before myocardial ischemia. All hearts underwent 33 minutes of global ischemia followed by 1 hour of reperfusion. At the end of the experiments, infarct size was determined by triphenyl-tetrazolium-chloride staining. RIPC plasma from pentobarbital anesthetized rats (Pento-RIPC) reduced infarct size from 64% (62-71%) (Pento-Con) to 34% (30-39%) (p < 0.0001). Infarct size with control plasma from propofol anesthetized rats was 59% (58-64%) (Prop-Con). RIPC plasma could not induce cardioprotection (Prop-RIPC: 63% [56-70%] ns vs Prop-Con). In contrast, RIPC plasma from pentobarbital anesthetized rats induced a significant infarct size reduction under propofol perfusion (Pento-RIPC: 34% [30-42%] vs Pento-Con: 54% [53-63%]; p < 0.0001). CONCLUSIONS: Loss of cardioprotection by RIPC during propofol anesthesia depends on inhibition of release of humoral factors.


Assuntos
Anestésicos Intravenosos/efeitos adversos , Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Propofol/efeitos adversos , Anestesia/efeitos adversos , Animais , Hemodinâmica , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Masculino , Traumatismo por Reperfusão Miocárdica/sangue , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa