Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(2): 287-296.e6, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606591

RESUMO

How remote enhancers interact with appropriate target genes persists as a central mystery in gene regulation. Here, we exploit the properties of transvection to explore enhancer-promoter communication between homologous chromosomes in living Drosophila embryos. We successfully visualized the activation of an MS2-tagged reporter gene by a defined developmental enhancer located in trans on the other homolog. This trans-homolog activation depends on insulator DNAs, which increase the stability-but not the frequency-of homolog pairing. A pair of heterotypic insulators failed to mediate transvection, raising the possibility that insulator specificity underlies the formation of chromosomal loop domains. Moreover, we found that a shared enhancer co-activates separate PP7 and MS2 reporter genes incis and intrans. Transvecting alleles weakly compete with one another, raising the possibility that they share a common pool of the transcription machinery. We propose that transvecting alleles form a trans-homolog "hub," which serves as a scaffold for the accumulation of transcription complexes.


Assuntos
Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Ativação Transcricional , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Genes Reporter , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(30): 15062-15067, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285341

RESUMO

Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of cellular signals. Many enhancers map quite far from their target genes, on the order of tens or even hundreds of kilobases. There is extensive evidence that remote enhancers are brought into proximity with their target promoters via long-range looping interactions. However, the exact physical distances of these enhancer-promoter interactions remain uncertain. Here, we employ high-resolution imaging of living Drosophila embryos to visualize the distances separating linked genes that are coregulated by a shared enhancer. Cotransvection assays (linked genes on separate homologs) suggest a surprisingly large distance during transcriptional activity: at least 100-200 nm. Similar distances were observed when a shared enhancer was placed into close proximity with linked reporter genes in cis. These observations are consistent with the occurrence of "transcription hubs," whereby clusters (or condensates) of multiple RNA polymerase II complexes and associated cofactors are periodically recruited to active promoters. The dynamics of this process might be responsible for rapid fluctuations in the distances separating the transcription of coregulated reporter genes during transvection. We propose that enhancer-promoter communication depends on a combination of classical looping and linking models.


Assuntos
Cromossomos de Insetos/química , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Regiões Promotoras Genéticas , Alelos , Animais , Animais Geneticamente Modificados , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Óperon Lac , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Transcrição Gênica , Proteína Vermelha Fluorescente
3.
Proc Natl Acad Sci U S A ; 115(33): 8376-8381, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061421

RESUMO

Traditional studies of gene regulation in the Drosophila embryo centered primarily on the analysis of fixed tissues. These methods provided considerable insight into the spatial control of gene activity, such as the borders of eve stripe 2, but yielded only limited information about temporal dynamics. The advent of quantitative live-imaging and genome-editing methods permits the detailed examination of the temporal control of endogenous gene activity. Here, we present evidence that the pair-rule genes fushi tarazu (ftz) and even-skipped (eve) undergo dynamic shifts in gene expression. We observe sequential anterior shifting of the stripes along the anterior to posterior axis, with stripe 1 exhibiting movement before stripe 2 and the more posterior stripes. Conversely, posterior stripes shift over greater distances (two or three nuclei) than anterior stripes (one or two nuclei). Shifting of the ftz and eve stripes are slightly offset, with ftz moving faster than eve This observation is consistent with previous genetic studies, suggesting that eve is epistatic to ftz The precision of pair-rule temporal dynamics might depend on enhancer-enhancer interactions within the eve locus, since removal of the endogenous eve stripe 1 enhancer via CRISPR/Cas9 genome editing led to precocious and expanded expression of eve stripe 2. These observations raise the possibility of an added layer of complexity in the positional information encoded by the segmentation gene regulatory network.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Drosophila/genética , Embrião não Mamífero/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Edição de Genes , Redes Reguladoras de Genes
4.
BMC Genomics ; 15: 376, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24885832

RESUMO

BACKGROUND: We have a limited understanding of genomic interactions that occur among partners for many symbioses. One of the most important symbioses in tropical reef habitats involves Symbiodinium. Most work examining Symbiodinium-host interactions involves cnidarian partners. To fully and broadly understand the conditions that permit Symbiodinium to procure intracellular residency, we must explore hosts from different taxa to help uncover universal cellular and genetic strategies for invading and persisting in host cells. Here, we present data from gene expression analyses involving the bioeroding sponge Cliona varians that harbors Clade G Symbiodinium. RESULTS: Patterns of differential gene expression from distinct symbiont states ("normal", "reinfected", and "aposymbiotic") of the sponge host are presented based on two comparative approaches (transcriptome sequencing and suppressive subtractive hybridization (SSH)). Transcriptomic profiles were different when reinfected tissue was compared to normal and aposymbiotic tissue. We characterized a set of 40 genes drawn from a pool of differentially expressed genes in "reinfected" tissue compared to "aposymbiotic" tissue via SSH. As proof of concept, we determined whether some of the differentially expressed genes identified above could be monitored in sponges grown under ecologically realistic field conditions. We allowed aposymbiotic sponge tissue to become re-populated by natural pools of Symbiodinium in shallow water flats in the Florida Keys, and we analyzed gene expression profiles for two genes found to be increased in expression in "reinfected" tissue in both the transcriptome and via SSH. These experiments highlighted the experimental tractability of C. varians to explore with precision the genetic events that occur upon establishment of the symbiosis. We briefly discuss lab- and field-based experimental approaches that promise to offer insights into the co-opted genetic networks that may modulate uptake and regulation of Symbiondinium populations in hospite. CONCLUSIONS: This work provides a sponge transcriptome, and a database of putative genes and genetic pathways that may be involved in Symbiodinium interactions. The relative patterns of gene expression observed in these experiments will need to be evaluated on a gene-by-gene basis in controlled and natural re-infection experiments. We argue that sponges offer particularly useful characteristics for discerning essential dimensions of the Symbiodinium niche.


Assuntos
Dinoflagellida/genética , Perfilação da Expressão Gênica , Poríferos/genética , Simbiose/genética , Transcriptoma , Animais , Biologia Computacional , Regulação da Expressão Gênica , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
5.
NPJ Digit Med ; 6(1): 213, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990134

RESUMO

Patients experiencing mental health crises often seek help through messaging-based platforms, but may face long wait times due to limited message triage capacity. Here we build and deploy a machine-learning-enabled system to improve response times to crisis messages in a large, national telehealth provider network. We train a two-stage natural language processing (NLP) system with key word filtering followed by logistic regression on 721 electronic medical record chat messages, of which 32% are potential crises (suicidal/homicidal ideation, domestic violence, or non-suicidal self-injury). Model performance is evaluated on a retrospective test set (4/1/21-4/1/22, N = 481) and a prospective test set (10/1/22-10/31/22, N = 102,471). In the retrospective test set, the model has an AUC of 0.82 (95% CI: 0.78-0.86), sensitivity of 0.99 (95% CI: 0.96-1.00), and PPV of 0.35 (95% CI: 0.309-0.4). In the prospective test set, the model has an AUC of 0.98 (95% CI: 0.966-0.984), sensitivity of 0.98 (95% CI: 0.96-0.99), and PPV of 0.66 (95% CI: 0.626-0.692). The daily median time from message receipt to crisis specialist triage ranges from 8 to 13 min, compared to 9 h before the deployment of the system. We demonstrate that a NLP-based machine learning model can reliably identify potential crisis chat messages in a telehealth setting. Our system integrates into existing clinical workflows, suggesting that with appropriate training, humans can successfully leverage ML systems to facilitate triage of crisis messages.

6.
Curr Biol ; 28(7): 1150-1156.e4, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576477

RESUMO

Most animal embryos display a delay in the activation of zygotic transcription during early embryogenesis [1]. This process is thought to help coordinate rapid increases in cell number during early development [2]. The timing of zygotic genome activation (ZGA) during the maternal-to-zygotic transition (MZT) remains uncertain despite extensive efforts. We explore ZGA in the simple protovertebrate, Ciona intestinalis. Single-cell RNA sequencing (RNA-seq) assays identified Cyclin B3 (Ccnb3) as a putative mediator of ZGA. Maternal Ccnb3 transcripts rapidly diminish in abundance during the onset of zygotic transcription at the 8-cell and 16-cell stages. Disruption of Ccnb3 activity results in precocious activation of zygotic transcription, while overexpression abolishes normal activation. These observations suggest that the depletion of maternal Cyclin B3 products is a critical component of the MZT and ZGA. We discuss evidence that this mechanism might play a conserved role in the MZT of other metazoans, including mice and humans.


Assuntos
Ciona/embriologia , Ciona/genética , Ciclina B/deficiência , Desenvolvimento Embrionário , Genoma , Animais , Ciclina B/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Herança Materna , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa