Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 113(6): 1244-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26614913

RESUMO

Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Núcleo Celular/fisiologia , Proliferação de Células/fisiologia , Citometria de Fluxo/métodos , Harpagophytum/citologia , Harpagophytum/fisiologia , Ciclo Celular/fisiologia , Núcleo Celular/ultraestrutura , Separação Celular/métodos , Células Cultivadas , Microscopia de Fluorescência/métodos
2.
Biotechnol Bioeng ; 112(12): 2439-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26037711

RESUMO

Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study.


Assuntos
Fenômenos Químicos , Hidrodinâmica , Hidrogênio/metabolismo , Luz , Fotobiorreatores/microbiologia , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/metabolismo
3.
Bioresour Technol ; 175: 82-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459807

RESUMO

To identify optimal hydrogen production conditions using growing cultures of Rhodobacter sphaeroides DSM 158 the effects of varying the reactor's volumetric power input (0.01-1.4kWm(-3)) and irradiation intensity (5-2500Wm(-2)) were investigated in batch and continuous production modes. Irradiation intensity had a greater effect on hydrogen production than volumetric power input. Hydrogen production and photofermentative biomass formation were maximized by irradiation at 2250Wm(-2) with a volumetric power input of 0.55kWm(-3). The bacterial dry weight (2.64gL(-1)) and rate of hydrogen production (195mLL(-1)h(-1)) achieved under these conditions were greater than any that have previously been reported for batch-mode hydrogen production by R. sphaeroides. Continuous mode experiments (D=0.1h(-1)) yielded a bacterial dry weight, hydrogen production rate, productivity and hydrogen yield of 2.35±0.18gL(-1), 165±6.2mLL(-1)h(-1), 3.96LL(-1)d(-1) and 36.6%, respectively.


Assuntos
Hidrogênio/metabolismo , Fotobiorreatores/microbiologia , Rhodobacter sphaeroides/metabolismo , Biomassa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa