Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769243

RESUMO

In vitro determination of hemolytic properties is a common and important method for preliminary evaluation of cytotoxicity of chemicals, drugs, or any blood-contacting medical device or material. The method itself is relatively straightforward, however, protocols used in the literature vary substantially. This leads to significant difficulties both in interpreting and in comparing the obtained values. Here, we examine how the different variables used under different experimental setups may affect the outcome of this assay. We find that certain key parameters affect the hemolysis measurements in a critical manner. The hemolytic effect of compounds tested here varied up to fourfold depending on the species of the blood source. The use of different types of detergents used for generating positive control samples (i.e., 100% hemolysis) produced up to 2.7-fold differences in the calculated hemolysis ratios. Furthermore, we find an expected, but substantial, increase in the number of hemolyzed erythrocytes with increasing erythrocyte concentration and with prolonged incubation time, which in turn affects the calculated hemolysis ratios. Based on our findings we propose an optimized protocol in an attempt to standardize future hemolysis studies.


Assuntos
Eritrócitos , Hemólise , Humanos
2.
Nucleic Acids Res ; 48(10): 5540-5554, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347931

RESUMO

In the fight against antimicrobial resistance, the bacterial DNA sliding clamp, ß-clamp, is a promising drug target for inhibition of DNA replication and translesion synthesis. The ß-clamp and its eukaryotic homolog, PCNA, share a C-terminal hydrophobic pocket where all the DNA polymerases bind. Here we report that cell penetrating peptides containing the PCNA-interacting motif APIM (APIM-peptides) inhibit bacterial growth at low concentrations in vitro, and in vivo in a bacterial skin infection model in mice. Surface plasmon resonance analysis and computer modeling suggest that APIM bind to the hydrophobic pocket on the ß-clamp, and accordingly, we find that APIM-peptides inhibit bacterial DNA replication. Interestingly, at sub-lethal concentrations, APIM-peptides have anti-mutagenic activities, and this activity is increased after SOS induction. Our results show that although the sequence homology between the ß-clamp and PCNA are modest, the presence of similar polymerase binding pockets in the DNA clamps allows for binding of the eukaryotic binding motif APIM to the bacterial ß-clamp. Importantly, because APIM-peptides display both anti-mutagenic and growth inhibitory properties, they may have clinical potential both in combination with other antibiotics and as single agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , DNA Polimerase III/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , DNA Polimerase III/química , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Mutagênese/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento
3.
Nucleic Acids Res ; 45(11): 6471-6485, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28407100

RESUMO

The SeqA protein binds hemi-methylated GATC sites and forms structures that sequester newly replicated origins and trail the replication forks. Cells that lack SeqA display signs of replication fork disintegration. The broken forks could arise because of over-initiation (the launching of too many forks) or lack of dynamic SeqA structures trailing the forks. To confirm one or both of these possible mechanisms, we compared two seqA mutants with the oriCm3 mutant. The oriCm3 mutant over-initiates because of a lack of origin sequestration but has wild-type SeqA protein. Cells with nonfunctional SeqA, but not oriCm3 mutant cells, had problems with replication elongation, were highly dependent on homologous recombination, and exhibited extensive chromosome fragmentation. The results indicate that replication forks frequently break in the absence of SeqA function and that the broken forks are rescued by homologous recombination. We suggest that SeqA may act in two ways to stabilize replication forks: (i) by enabling vital replication fork repair and restarting reactions and (ii) by preventing replication fork rear-end collisions.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Quebras de DNA de Cadeia Dupla , Fragmentação do DNA , DNA Bacteriano/biossíntese , Cinética , Viabilidade Microbiana , Conformação de Ácido Nucleico
4.
J Bacteriol ; 199(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947673

RESUMO

The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading ß-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.


Assuntos
Proteínas de Bactérias/genética , DNA Polimerase III/genética , Replicação do DNA , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/crescimento & desenvolvimento , Recombinação Homóloga , Viabilidade Microbiana , Mutação , Complexo de Reconhecimento de Origem , Fenótipo , Recombinases Rec A/genética , Resposta SOS em Genética
5.
Nucleic Acids Res ; 43(5): 2730-43, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25722374

RESUMO

The Escherichia coli SeqA protein binds to newly replicated, hemimethylated DNA behind replication forks and forms structures consisting of several hundred SeqA molecules bound to about 100 kb of DNA. It has been suggested that SeqA structures either direct the new sister DNA molecules away from each other or constitute a spacer that keeps the sisters together. We have developed an image analysis script that automatically measures the distance between neighboring foci in cells. Using this tool as well as direct stochastic optical reconstruction microscopy (dSTORM) we find that in cells with fluorescently tagged SeqA and replisome the sister SeqA structures were situated close together (less than about 30 nm apart) and relatively far from the replisome (on average 200-300 nm). The results support the idea that newly replicated sister molecules are kept together behind the fork and suggest the existence of a stretch of DNA between the replisome and SeqA which enjoys added stabilization. This could be important in facilitating DNA transactions such as recombination, mismatch repair and topoisomerase activity. In slowly growing cells without ongoing replication forks the SeqA protein was found to reside at the fully methylated origins prior to initiation of replication.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Ciclo Celular/genética , Divisão Celular/genética , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Citometria de Fluxo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Replicon/genética
6.
J Bacteriol ; 198(8): 1305-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26858102

RESUMO

UNLABELLED: The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a "slow-growth" type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE: It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.


Assuntos
Segregação de Cromossomos/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Mutação , Transporte Proteico
7.
Sci Rep ; 11(1): 474, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436807

RESUMO

Topoisomerase IV (TopoIV) is a vital bacterial enzyme which disentangles newly replicated DNA and enables segregation of daughter chromosomes. In bacteria, DNA replication and segregation are concurrent processes. This means that TopoIV must continually remove inter-DNA linkages during replication. There exists a short time lag of about 10-20 min between replication and segregation in which the daughter chromosomes are intertwined. Exactly where TopoIV binds during the cell cycle has been the subject of much debate. We show here that TopoIV localizes to the origin proximal side of the fork trailing protein SeqA and follows the movement pattern of the replication machinery in the cell.


Assuntos
Cromossomos Bacterianos/metabolismo , Replicação do DNA/fisiologia , DNA Topoisomerase IV/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Inibidores da Topoisomerase II/farmacologia
8.
PLoS One ; 9(10): e110575, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333813

RESUMO

The Escherichia coli SeqA protein forms complexes with new, hemimethylated DNA behind replication forks and is important for successful replication during rapid growth. Here, E. coli cells with two simultaneously replicating chromosomes (multifork DNA replication) and YFP tagged SeqA protein was studied. Fluorescence microscopy showed that in the beginning of the cell cycle cells contained a single focus at midcell. The focus was found to remain relatively immobile at midcell for a period of time equivalent to the duration of origin sequestration. Then, two abrupt relocalization events occurred within 2-6 minutes and resulted in SeqA foci localized at each of the cell's quarter positions. Imaging of cells containing an additional fluorescent tag in the origin region showed that SeqA colocalizes with the origin region during sequestration. This indicates that the newly replicated DNA of first one chromosome, and then the other, is moved from midcell to the quarter positions. At the same time, origins are released from sequestration. Our results illustrate that newly replicated sister DNA is segregated pairwise to the new locations. This mode of segregation is in principle different from that of slowly growing bacteria where the newly replicated sister DNA is partitioned to separate cell halves and the decatenation of sisters a prerequisite for, and possibly a mechanistic part of, segregation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Metilação de DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Microscopia de Fluorescência , Ligação Proteica , Origem de Replicação
9.
ACS Nano ; 6(6): 5648-58, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22671719

RESUMO

The development and application of nanoparticles as in vivo delivery vehicles for therapeutic and/or diagnostic agents has seen a drastic growth over the last decades. Novel imaging techniques allow real-time in vivo study of nanoparticle accumulation kinetics at the level of the cell and targeted tissue. Successful intravenous application of such nanocarriers requires a hydrophilic particle surface coating, of which polyethylene glycol (PEG) has become the most widely studied and applied. In the current study, the effect of nanoparticle PEG surface density on the targeting efficiency of ligand-functionalized nanoemulsions was investigated. We synthesized 100 nm nanoemulsions with a PEG surface density varying from 5 to 50 mol %. Fluorescent and paramagnetic lipids were included to allow their multimodal detection, while RGD peptides were conjugated to the PEG coating to obtain specificity for the α(v)ß(3)-integrin. The development of a unique experimental imaging setup allowed us to study, in real time, nanoparticle accumulation kinetics at (sub)-cellular resolution in tumors that were grown in a window chamber model with confocal microscopy imaging, and at the macroscopic tumor level in subcutaneously grown xenografts with magnetic resonance imaging. Accumulation in the tumor occurred more rapidly for the targeted nanoemulsions than for the nontargeted versions, and the PEG surface density had a strong effect on nanoparticle targeting efficiency. Counterintuitively, yet consistent with the PEG density conformation models, the highest specificity and targeting efficiency was observed at a low PEG surface density.


Assuntos
Integrina alfaVbeta3/metabolismo , Microscopia de Fluorescência/métodos , Nanocápsulas/química , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa