Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
2.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
3.
Biochem Soc Trans ; 49(5): 2101-2111, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495326

RESUMO

In contrast with the heart, the adult mammalian vasculature retains significant remodelling capacity, dysregulation of which is implicated in disease development. In particular, vascular smooth muscle cells (VSMCs) play major roles in the pathological vascular remodelling characteristic of atherosclerosis, restenosis, aneurysm and pulmonary arterial hypertension. Clonal lineage tracing revealed that the VSMC-contribution to disease results from the hyperproliferation of few pre-existing medial cells and suggested that VSMC-derived cells from the same clone can adopt diverse phenotypes. Studies harnessing the powerful combination of lineage tracing and single-cell transcriptomics have delineated the substantial diversity of VSMC-derived cells in vascular lesions, which are proposed to have both beneficial and detrimental effects on disease severity. Computational analyses further suggest that the pathway from contractile VSMCs in healthy arteries to phenotypically distinct lesional cells consists of multiple, potentially regulatable, steps. A better understanding of how individual steps are controlled could reveal effective therapeutic strategies to minimise VSMC functions that drive pathology whilst maintaining or enhancing their beneficial roles. Here we review current knowledge of VSMC plasticity and highlight important questions that should be addressed to understand how specific stages of VSMC investment and phenotypic diversification are controlled. Implications for developing therapeutic strategies in pathological vascular remodelling are discussed and we explore how cutting-edge approaches could be used to elucidate the molecular mechanisms underlying VSMC regulation.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Transdução de Sinais/genética , Animais , Linhagem da Célula/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos
4.
Vet Radiol Ultrasound ; 62(4): 387-393, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33818829

RESUMO

Reports of machine learning implementations in veterinary imaging are infrequent but changes in machine learning architecture and access to increased computing power will likely prompt increased interest. This diagnostic accuracy study describes a particular form of machine learning, a deep learning convolution neural network (ConvNet) for hip joint detection and classification of hip dysplasia from ventro-dorsal (VD) pelvis radiographs submitted for hip dysplasia screening. 11,759 pelvis images were available together with their Fédération Cynologique Internationale (FCI) scores. The dataset was dicotomized into images showing no signs of hip dysplasia (FCI grades "A" and "B", the "A-B" group) and hips showing signs of dysplasia (FCI grades "C", "D," and "E", the "C-E" group). In a transfer learning approach, an existing pretrained ConvNet was fine-tuned to provide models to recognize hip joints in VD pelvis images and to classify them according to their FCI score grouping. The results yielded two models. The first was successful in detecting hip joints in the VD pelvis images (intersection over union of 85%). The second yielded a sensitivity of 0.53, a specificity of 0.92, a positive predictive value of 0.91, and a negative predictive value of 0.81 for the classification of detected hip joints as being in the "C-E" group. ConvNets and transfer learning are applicable to veterinary imaging. The models obtained have potential to be a tool to aid in hip screening protocols if hip dysplasia classification performance was improved through access to more data and possibly by model optimization.


Assuntos
Aprendizado Profundo , Luxação do Quadril/veterinária , Articulação do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Radiografia/veterinária , Animais , Luxação do Quadril/diagnóstico por imagem , Humanos , Programas de Rastreamento/veterinária , Valor Preditivo dos Testes
5.
Development ; 144(4): 567-579, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087629

RESUMO

Jmjd2 H3K9 demethylases cooperate in promoting mouse embryonic stem cell (ESC) identity. However, little is known about their importance at the exit of ESC pluripotency. Here, we reveal that Jmjd2c facilitates this process by stabilising the assembly of mediator-cohesin complexes at lineage-specific enhancers. Functionally, we show that Jmjd2c is required in ESCs to initiate appropriate gene expression programs upon somatic multi-lineage differentiation. In the absence of Jmjd2c, differentiation is stalled at an early post-implantation epiblast-like stage, while Jmjd2c-knockout ESCs remain capable of forming extra-embryonic endoderm derivatives. Dissection of the underlying molecular basis revealed that Jmjd2c is re-distributed to lineage-specific enhancers during ESC priming for differentiation. Interestingly, Jmjd2c-bound enhancers are co-occupied by the H3K9-methyltransferase G9a (also known as Ehmt2), independently of its H3K9-modifying activity. Loss of Jmjd2c abrogates G9a recruitment and further destabilises loading of the mediator and cohesin components Med1 and Smc1a at newly activated and poised enhancers in ESC-derived epiblast-like cells. These findings unveil Jmjd2c and G9a as novel enhancer-associated factors, and implicate Jmjd2c as a molecular scaffold for the assembly of essential enhancer-protein complexes with an impact on timely gene activation.


Assuntos
Células-Tronco Embrionárias/citologia , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular , Linhagem da Célula , Proteínas Cromossômicas não Histona/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Histonas/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Análise de Sequência de RNA , Coesinas
6.
Respir Res ; 21(1): 263, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046053

RESUMO

BACKGROUND: Long-term treatment with corticosteroids causes loss of bone density, but the effects of using short-term high-dose systemic-corticosteroid therapy to treat acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are unclear. Our aim was to determine whether high-dose corticosteroid therapy affected bone turnover markers (BTMs) to a greater extent compared to low-dose corticosteroid therapy. METHODS: The CORTICO-COP trial (NCT02857842) showed that an eosinophil-guided corticosteroid intervention led to approximately 60% lower accumulated corticosteroid dose for hospitalized patients with AECOPD (low-dose group) compared with 5-day standard corticosteroid treatment (high-dose group). We compared the levels of BTMs C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP) in 318 participants during AECOPD and at 1- and 3-month follow-up visits. RESULTS: CTX decreased and P1NP increased significantly over time in both treatment groups. There were no significant differences between the groups at 1- or 3-months follow-up for P1NP. A significant drop in CTX was seen at 3 months (down Δ24% from the baseline, p = 0.017) for the high dose group. CONCLUSION: Short-term, high-dose systemic corticosteroid treatment caused a rapid suppression of biomarkers of bone resorption. Corticosteroids did not suppress biomarkers of bone formation, regardless of patients receiving low or high doses of corticosteroids. This therapy was, therefore, harmless in terms of bone safety, in our prospective series of COPD patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02857842 . Submitted August 2nd, 2016.


Assuntos
Corticosteroides/administração & dosagem , Remodelação Óssea/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Remodelação Óssea/fisiologia , Esquema de Medicação , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Doença Pulmonar Obstrutiva Crônica/diagnóstico
7.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30943775

RESUMO

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Assuntos
Aneurisma Aórtico/patologia , Dissecção Aórtica/patologia , Autofagia , Plasticidade Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Adulto , Idoso , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
8.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434493

RESUMO

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Assuntos
Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Desmetilação , Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo
9.
J Allergy Clin Immunol ; 141(2): 529-538.e13, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28689794

RESUMO

BACKGROUND: Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. OBJECTIVE: The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet compared with placebo on the risk of developing asthma. METHODS: A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial, comprising 3 years of treatment and 2 years of follow-up. RESULTS: There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet significantly reduced the risk of experiencing asthma symptoms or using asthma medication at the end of trial (odds ratio = 0.66, P < .036), during the 2-year posttreatment follow-up, and during the entire 5-year trial period. Also, grass allergic rhinoconjunctivitis symptoms were 22% to 30% reduced (P < .005 for all 5 years). At the end of the trial, the use of allergic rhinoconjunctivitis pharmacotherapy was significantly less (27% relative difference to placebo, P < .001). Total IgE, grass pollen-specific IgE, and skin prick test reactivity to grass pollen were all reduced compared to placebo. CONCLUSIONS: Treatment with the SQ grass sublingual immunotherapy tablet reduced the risk of experiencing asthma symptoms and using asthma medication, and had a positive, long-term clinical effect on rhinoconjunctivitis symptoms and medication use but did not show an effect on the time to onset of asthma.


Assuntos
Asma , Rinite Alérgica Sazonal , Imunoterapia Sublingual , Asma/imunologia , Asma/patologia , Asma/terapia , Criança , Pré-Escolar , Conjuntivite Alérgica/imunologia , Conjuntivite Alérgica/patologia , Conjuntivite Alérgica/terapia , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/patologia , Rinite Alérgica Sazonal/terapia , Comprimidos
10.
J Viral Hepat ; 25(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28772350

RESUMO

Hepatitis C virus (HCV) is a human hepatotropic virus, but many hepatoma cell lines are not permissive to this virus. In a previous study, we observed that SNU-182, SNU-398 and SNU-449 hepatoma cell lines were nonpermissive to HCV. To understand the nonpermissivity, we evaluated the ability of each cell line to support the different steps of HCV life cycle (entry, replication and production of infectious particles). Using retroviral pseudoparticles pseudotyped with HCV envelope proteins and recombinant HCV produced in cell culture, we observed that low level or absence of claudin-1 (CLDN1) expression limited the viral entry process in SNU-182 and SNU-398 cells, respectively. Our results also showed that supplementation of the three cell lines with miR-122 partly restored the replication of a JFH1 HCV replicon. Finally, we observed that expression of apolipoprotein E (ApoE) was very low or undetectable in the three cell lines and that its ectopic expression permits the production of infectious viral particles in SNU-182 and SNU-398 cells but not in SNU-449 cells. Nevertheless, the supplementation of SNU-182, SNU-398 and SNU-449 cells with CLDN1, miR-122 and ApoE was not sufficient to render these cells as permissive as HuH-7 cells. Thus, these cell lines could serve as cell culture models for functional studies on the role of CLDN1, miR-122 and ApoE in HCV life cycle but also for the identification of new restriction and/or dependency host factors essential for HCV infection.


Assuntos
Apolipoproteínas E/metabolismo , Claudina-1/metabolismo , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/fisiologia , Hepatócitos/virologia , MicroRNAs/metabolismo , Apolipoproteínas E/genética , Linhagem Celular Tumoral , Claudina-1/genética , Humanos , MicroRNAs/genética , Transdução Genética
11.
Circ Res ; 119(12): 1313-1323, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27682618

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) accumulation is a hallmark of atherosclerosis and vascular injury. However, fundamental aspects of proliferation and the phenotypic changes within individual VSMCs, which underlie vascular disease, remain unresolved. In particular, it is not known whether all VSMCs proliferate and display plasticity or whether individual cells can switch to multiple phenotypes. OBJECTIVE: To assess whether proliferation and plasticity in disease is a general characteristic of VSMCs or a feature of a subset of cells. METHODS AND RESULTS: Using multicolor lineage labeling, we demonstrate that VSMCs in injury-induced neointimal lesions and in atherosclerotic plaques are oligoclonal, derived from few expanding cells. Lineage tracing also revealed that the progeny of individual VSMCs contributes to both alpha smooth muscle actin (aSma)-positive fibrous cap and Mac3-expressing macrophage-like plaque core cells. Costaining for phenotypic markers further identified a double-positive aSma+ Mac3+ cell population, which is specific to VSMC-derived plaque cells. In contrast, VSMC-derived cells generating the neointima after vascular injury generally retained the expression of VSMC markers and the upregulation of Mac3 was less pronounced. Monochromatic regions in atherosclerotic plaques and injury-induced neointima did not contain VSMC-derived cells expressing a different fluorescent reporter protein, suggesting that proliferation-independent VSMC migration does not make a major contribution to VSMC accumulation in vascular disease. CONCLUSIONS: We demonstrate that extensive proliferation of a low proportion of highly plastic VSMCs results in the observed VSMC accumulation after injury and in atherosclerotic plaques. Therapeutic targeting of these hyperproliferating VSMCs might effectively reduce vascular disease without affecting vascular integrity.


Assuntos
Aterosclerose/fisiopatologia , Proliferação de Células/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Neointima/fisiopatologia , Lesões do Sistema Vascular/fisiopatologia , Animais , Aterosclerose/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Neointima/patologia , Lesões do Sistema Vascular/patologia
13.
Neural Plast ; 2017: 1892612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634550

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly; important risk factors are old age and inheritance of the apolipoprotein E4 (APOE4) allele. Changes in amyloid precursor protein (APP) binding, trafficking, and sorting may be important AD causative factors. Secretase-mediated APP cleavage produces neurotoxic amyloid-beta (Aß) peptides, which form lethal deposits in the brain. In vivo and in vitro studies have implicated sortilin-related receptor (SORL1) as an important factor in APP trafficking and processing. Recent in vitro evidence has associated the APOE4 allele and alterations in the SORL1 pathway with AD development and progression. Here, we analyzed SORL1 expression in neural stem cells (NSCs) from AD patients carrying null, one, or two copies of the APOE4 allele. We show reduced SORL1 expression only in NSCs of a patient carrying two copies of APOE4 allele with increased Aß/SORL1 localization along the degenerated neurites. Interestingly, SORL1 binding to APP was largely compromised; this could be almost completely reversed by γ-secretase (but not ß-secretase) inhibitor treatment. These findings may yield new insights into the complex interplay of SORL1 and AD pathology and point to NSCs as a valuable tool to address unsolved AD-related questions in vitro.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Feminino , Humanos , Recém-Nascido , Masculino , Neuritos/metabolismo , Fenótipo
14.
Nature ; 467(7311): E3-4; discussion E5, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20811409

RESUMO

The contribution of REST to embryonic stem (ES) cell pluripotency has been uncertain. Two years ago, Singh et al. claimed that Rest(+/-) and REST knock-down ES cells expressed reduced levels of pluripotency markers, in contrast to a prior and subsequent reports. To understand the basis of this difference, we analysed the YHC334 (YHC) and RRC160 (RRC) gene-trap ES cell lines used by Singh et al., obtained directly from BayGenomics. Both REST mutant lines generated REST-betaGeo fusion proteins, but expressed pluripotency genes at levels similar to appropriately matched parental wild ES cells, consistent with expression being REST-independent.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Repressoras/genética , Animais , Linhagem Celular , Camundongos , Mutagênese Insercional , Proteínas Recombinantes de Fusão/genética
15.
J Virol ; 88(13): 7189-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719422

RESUMO

UNLABELLED: Viral hemorrhagic septicemia virus (VHSV) is separated into four different genotypes (I to IV) with different sublineages (K. Einer-Jensen, P. Ahrens, R. Forsberg, and N. Lorenzen, J. Gen. Virol. 85:1167-1179, 2004; K. Einer-Jensen, J. Winton, and N. Lorenzen, Vet. Microbiol. 106:167-178, 2005). European marine VHSV strains (of genotypes I to III) are, in general, nonpathogenic or have very low pathogenicity to rainbow trout after a waterborne challenge, and here we also show that genotype IVa is nonpathogenic to trout. Despite several attempts, it has not been possible to link genomic variation to in vivo virulence. In vitro virulence to gill epithelial cells (GECs) has been used as a proxy for in vivo virulence, and here we extend these studies further with the purpose of identifying residues associated with in vitro virulence. Genotype Ia (DK-3592B) and III (NO/650/07) isolates, which are pathogenic to rainbow trout (O. B. Dale, I. Orpetveit, T. M. Lyngstad, S. Kahns, H. F. Skall, N. J. Olesen, and B. H. Dannevig, Dis. Aquat. Organ. 85:93-103, 2009), were compared to two marine strains that are nonpathogenic to trout, genotypes Ib (strain 1p8 [H. F. Mortensen, O. E. Heuer, N. Lorenzen, L. Otte, and N. J. Olesen, Virus Res. 63:95-106, 1999]) and IVa (JF-09). DK-3592 and NO/650/07 were pathogenic to GECs, while marine strains 1p8 and JF-09 were nonpathogenic to GECs. Eight conserved amino acid substitutions contrasting high- and low-virulence strains were identified, and reverse genetics was used in a gain-of-virulence approach based on the JF-09 backbone. Mutations were introduced into the G, NV, and L genes, and seven different virus clones were obtained. For the first time, we show that a single amino acid mutation in conserved region IV of the L protein, I1012F, rendered the virus able to replicate and induce a cytopathic effect in trout GECs. The other six mutated variants remained nonpathogenic. IMPORTANCE: This is the first study to clearly link in vitro virulence of viral hemorrhagic septicemia virus (VHSV) with an amino acid residue in the L protein, a site located in conserved region IV of the L protein. In vitro virulence is documented by induction of cytopathic effects and viability studies of gill epithelial cells, and the observed cellular responses to infection are associated with increased viral replication levels. There are no previous studies addressing the importance of the L protein or the RNA-dependent RNA polymerase for virus virulence in vitro or in vivo. Therefore, the findings reported here should broaden the search for pathogenicity traits in novirhabdoviruses, and there is a possibility that the polymerase participates in defining the host species virulence of various VHSV strains.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Células Epiteliais/virologia , Brânquias/virologia , Septicemia Hemorrágica Viral/virologia , Mutação/genética , Novirhabdovirus/genética , Novirhabdovirus/patogenicidade , Virulência/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Septicemia Hemorrágica Viral/genética , Técnicas In Vitro , Macrófagos/virologia , Dados de Sequência Molecular , Novirhabdovirus/enzimologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/virologia , Homologia de Sequência de Aminoácidos
16.
Nature ; 457(7233): E4-5; discussion E7, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19242417

RESUMO

The DNA-binding protein REST (also called NRSF) is a transcriptional repressor that targets many neuronal genes and is abundant in human and mouse pluripotent embryonic stem cells (ESCs). In a recent Letter to Nature, Singh et al. suggested that REST controls the self-renewal and pluripotency of ESCs, because they found that ESCs in which a single REST allele was disrupted (Fig. 1a, beta-geo-stop insertion) had reduced alkaline phosphatase activity and expressed lower levels of several pluripotency-associated genes. Here we show that partial or complete loss of functional REST protein does not abrogate ESC potential as reflected by marker gene expression. These data are consistent with earlier reports, and argue that REST is not required for maintaining ESC pluripotency.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Reprodutibilidade dos Testes , Tretinoína/farmacologia
17.
Nat Cardiovasc Res ; 3(6): 714-733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39215134

RESUMO

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.


Assuntos
Proliferação de Células , Redes Reguladoras de Genes , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Inibidor Tecidual de Metaloproteinase-1 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Humanos , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Células Cultivadas , Análise de Célula Única , Epigênese Genética , Transcriptoma , Animais , Subunidade alfa 2 de Fator de Ligação ao Core
18.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898928

RESUMO

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

19.
Blood ; 117(1): 83-7, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20876850

RESUMO

Many lineage-specific developmental regulator genes are transcriptionally primed in embryonic stem (ES) cells; RNA Pol(II) is bound at their promoters but is prevented from productive elongation by the activity of polycomb repressive complexes (PRC) 1 and 2. This epigenetically poised state is thought to enable ES cells to rapidly execute multiple differentiation programs and is recognized by a simultaneous enrichment for trimethylation of lysine 4 and trimethylation of lysine 27 of histone H3 (bivalent chromatin) across promoter regions. Here we show that the chromatin profile of this important cohort of genes is progressively modified as ES cells differentiate toward blood-forming precursors. Surprisingly however, neural specifying genes, such as Nkx2-2, Nkx2-9, and Sox1, remain bivalent and primed even in committed hemangioblasts, as conditional deletion of PRC1 results in overt and inappropriate expression of neural genes in hemangioblasts. These data reinforce the importance of PRC1 for normal hematopoietic differentiation and reveal an unexpected epigenetic plasticity of mesoderm-committed hemangioblasts.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Hemangioblastos/fisiologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/citologia , Proteínas Fetais/genética , Proteínas de Fluorescência Verde/genética , Histonas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Peixe-Zebra
20.
Nat Cell Biol ; 8(5): 532-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16570078

RESUMO

Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.


Assuntos
Cromatina/genética , Células-Tronco Pluripotentes/metabolismo , Animais , Carcinoma/genética , Linhagem Celular , Células Cultivadas , Período de Replicação do DNA/genética , Regulação para Baixo/genética , Epigênese Genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Células-Tronco Multipotentes/metabolismo , Complexo Repressor Polycomb 2 , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa