Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Microbiol ; 106(4): 635-645, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28925527

RESUMO

Programmed ribosomal frameshifting (PRF) is a translational anomaly causing the ribosome to shift into an alternative reading frame. PRFs are common in viral genomes, using a single nucleotide sequence to code for two proteins in overlapping frames. In bacteria and eukaryota, PRFs are less frequent. We report on a PRF in the copper detoxification system of Escherichia coli where a metallochaperone is generated out of the first 69 amino acids and a C-terminal out-of-frame glycine of the gene copA. copA besides codes for the P1B -ATPase CopA, a membrane-integral protein and principal interaction target of the chaperone. To enhance the production of the frameshift-generated cytosolic copper binding protein a truncated transcript is produced from the monocistronic copA gene. This shorter transcript is essential for producing sufficient amounts of the chaperone to support the membrane pump. The findings close the gap in our understanding of the molecular physiology of cytoplasmic copper transport in E. coli, revealing that a chaperone-like entity is required for full functionality of the P1B -ATPase copper pump. We, moreover, demonstrate that the primary transcriptional response to copper results in formation of the small transcript and concurrently, the metallochaperone plays a key role in resistance against copper shock.


Assuntos
ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ribossomos/metabolismo
2.
Hum Mol Genet ; 25(3): 459-71, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604148

RESUMO

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Doença de Parkinson/genética , Serina Endopeptidases/genética , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Serina Endopeptidases/metabolismo
3.
Hum Mol Genet ; 23(15): 3975-89, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24619358

RESUMO

Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Calpaína/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteólise , Transdução de Sinais , Sinapses/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo
4.
Mol Cell Proteomics ; 13(2): 475-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284412

RESUMO

FE65 is a cytosolic adapter protein and an important binding partner of amyloid precursor protein. Dependent on Thr668 phosphorylation in amyloid precursor protein, which influences amyloidogenic amyloid precursor protein processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease, and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and downstream signaling pathways, the identification of the FE65 interactome is of central interest in Alzheimer disease research. In this study, we identified 121 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65 binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice relative to wild-type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be up-regulated in double knockout neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of intracellular calcium homeostasis. Whereas transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Animais , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Células HEK293 , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Ligação Proteica , Mapas de Interação de Proteínas/genética , Sinapses/genética , Sinapses/metabolismo
5.
J Biol Chem ; 289(31): 21782-94, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942740

RESUMO

Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO.


Assuntos
Oxigenases/antagonistas & inibidores , Zinco/farmacologia , Cristalização , Methylococcus capsulatus/efeitos dos fármacos , Methylococcus capsulatus/enzimologia , Oxigenases/química , Oxigenases/metabolismo , Conformação Proteica , Espectroscopia por Absorção de Raios X
6.
Photosynth Res ; 122(3): 293-304, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25134685

RESUMO

The cryptophyte phycocyanin Cr-PC577 from Hemiselmis pacifica is a close relative of Cr-PC612 found in Hemiselmis virescens and Hemiselmis tepida. The two biliproteins differ in that Cr-PC577 lacks the major peak at around 612 nm in the absorption spectrum. Cr-PC577 was thus purified and characterized with respect to its bilin chromophore composition. Like other cryptophyte phycobiliproteins, Cr-PC577 is an (αß)(α'ß) heterodimer with phycocyanobilin (PCB) bound to the α-subunits. While one chromophore of the ß-subunit is also PCB, mass spectrometry identified an additional chromophore with a mass of 585 Da at position ß-Cys-158. This mass can be attributed to either a dihydrobiliverdin (DHBV), mesobiliverdin (MBV), or bilin584 chromophore. The doubly linked bilin at position ß-Cys-50 and ß-Cys-61 could not be identified unequivocally but shares spectral features with DHBV. We found that Cr-PC577 possesses a novel chromophore composition with at least two different chromophores bound to the ß-subunit. Overall, our data contribute to a better understanding of cryptophyte phycobiliproteins and furthermore raise the question on the biosynthetic pathway of cryptophyte chromophores.


Assuntos
Criptófitas/metabolismo , Ficobiliproteínas/química , Biliverdina/análogos & derivados , Biliverdina/química , Cromatografia Líquida de Alta Pressão , Criptófitas/fisiologia , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas , Peso Molecular , Ficobilinas/química , Ficobiliproteínas/metabolismo , Ficobiliproteínas/fisiologia , Ficocianina/química , Subunidades Proteicas/química , Análise de Sequência de Proteína
7.
Mol Cell Neurosci ; 54: 71-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23369945

RESUMO

Aggregation and neurotoxicity of misfolded alpha-synuclein (αSyn) are crucial mechanisms for progressive dopaminergic neurodegeneration associated with Parkinson's disease (PD). Posttranslational modifications (PTMs) of αSyn caused by oxidative stress, including modification by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), have been implicated to promote oligomerization of αSyn. However, it is yet unclear if these PTMs lead to different types of oligomeric intermediates. Moreover, little is known about which PTM-derived αSyn species exerts toxicity to dopaminergic cells. In this study, we directly compared aggregation characteristics of HNE-αSyn, n-αSyn, and o-αSyn. Generally, all of them promoted αSyn oligomerization. Particularly, HNE-αSyn and n-αSyn were more prone to forming oligomers than unmodified αSyn. Moreover, these PTMs prevented the formation of amyloid-like fibrils, although HNE-αSyn and o-αSyn were able to generate protofibrillar structures. The cellular effects associated with distinct PTMs were studied by exposing modified αSyn to dopaminergic Lund human mesencephalic (LUHMES) neurons. The cellular toxicity of HNE-αSyn was significantly higher than other PTM species. Furthermore, we tested the toxicity of HNE-αSyn in dopaminergic LUHMES cells and other cell types with low tyrosine hydroxylase (TH) expression, and additionally analyzed the loss of TH-immunoreactive cells in HNE-αSyn-treated LUHMES cells. We observed a selective toxicity of HNE-αSyn to neurons with higher TH expression. Further mechanistic studies showed that HNE-modification apparently increased the interaction of extracellular αSyn with neurons. Moreover, exposure of differentiated LUHMES cells to HNE-αSyn triggered the production of intracellular reactive oxygen species, preceding neuronal cell death. Antioxidant treatment effectively protected cells from the damage triggered by HNE-αSyn. Our findings suggest a specific pathological effect of HNE-αSyn on dopaminergic neurons.


Assuntos
Aldeídos/toxicidade , Reagentes de Ligações Cruzadas/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/toxicidade , Aldeídos/química , Animais , Linhagem Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Neurônios Dopaminérgicos/metabolismo , Hipocampo/citologia , Humanos , Mesencéfalo/citologia , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
8.
Biochim Biophys Acta ; 1817(4): 598-609, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21771582

RESUMO

Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.


Assuntos
Apoptose/fisiologia , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Modelos Biológicos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia
10.
Proteomics ; 12(7): 950-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522801

RESUMO

Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fosfopeptídeos/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Complexo IV da Cadeia de Transporte de Elétrons/química , Dados de Sequência Molecular , Miocárdio/enzimologia , Fosfopeptídeos/química , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 10(12): 5398-408, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21978018

RESUMO

New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientist's data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.


Assuntos
Proteoma/análise , Proteoma/química , Proteômica/métodos , Transdução de Sinais , Software , Algoritmos , Apoptose , Simulação por Computador , Bases de Dados de Proteínas , Células HEK293 , Humanos , Insulina/química , Fosforilação , Mapeamento de Interação de Proteínas/métodos , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
12.
Anal Chem ; 83(5): 1862-5, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21306124

RESUMO

Novel molecularly imprinted polymers (MIPs) designed to bind the side chain of phosphotyrosine can be used as artificial receptors for affinity-based enrichment of proteolytic peptides. In comparison with general enrichment methods for phosphorylated peptides such as TiO(2)-based methods, the pTyr-imprinted polymers offered high selectivity for pTyr-containing peptides down to the low fmol level. This suggests MIPs as a new tool for affinity-based proteomics.


Assuntos
Peptídeos/metabolismo , Polímeros/química , Tirosina/metabolismo , Fosforilação , Titânio/química
13.
Mol Cell Proteomics ; 7(9): 1714-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18541608

RESUMO

The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Animais , Bovinos , Cinética , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Miocárdio/ultraestrutura , Fosforilação , Fosfosserina/análise , Fosfotreonina/análise , Fosfotirosina/análise , Ratos , Serina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Treonina/metabolismo
14.
Cells ; 9(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276480

RESUMO

The pathological hallmark of Parkinson's disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Proteoma/metabolismo , Substância Negra/metabolismo , Sinaptossomos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Melaninas/metabolismo , Metaloendopeptidases/metabolismo , Metionina tRNA Ligase/metabolismo , Proteômica/métodos , Timidina Quinase/metabolismo
15.
J Chromatogr A ; 1471: 45-50, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27765418

RESUMO

Selective enrichment techniques are essential for mapping of protein posttranslational modifications (PTMs). Phosphorylation is one of the PTMs which continues to be associated with significant analytical challenges. Particularly problematic are tyrosine-phosphorylated peptides (pY-peptides) resulting from tryptic digestion which commonly escape current chemo- or immuno- affinity enrichments and hence remain undetected. We here report on significant improvements in this regard using pY selective molecularly imprinted polymers (pY-MIPs). The pY-MIP was compared with titanium dioxide (TiO2) affinity based enrichment and immunoprecipitation (IP) with respect to selective enrichment from a mixture of 13 standard peptides at different sample loads. At a low sample load (1pmol of each peptide), IP resulted in enrichment of only a triply phosphorylated peptide whereas TiO2 enriched phosphopeptides irrespective of the amino acid side chain. However, with increased sample complexity, TiO2 failed to enrich the doubly phosphorylated peptides. This contrasted with the pY-MIP showing enrichment of all four tyrosine phosphorylated peptides at 1pmol sample load of each peptide with a few other peptides binding unselectively. At an increased sample complexity consisting of the standard peptides spiked into mouse brain digest, the MIP showed clear enrichment of all four pY- peptides.


Assuntos
Técnicas de Química Analítica/métodos , Impressão Molecular , Fosfopeptídeos/isolamento & purificação , Polímeros/química , Técnicas de Química Analítica/normas , Fosfopeptídeos/química , Fosforilação , Titânio/química , Tirosina/química
16.
Proteomics Clin Appl ; 9(9-10): 848-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25195870

RESUMO

The analysis of brain function in normal aging and neurodegenerative, psychiatric, and neurological diseases has long been a subject of interest and has historically been investigated through descriptive analysis of macroscopic or microscopic observations. It is now possible to characterize brain cells, such as neurons and glial cells, or even their subcellular components, at the molecular level. This ability enables researchers to more closely examine brain cell specific molecular pathways to elucidate distinct brain functions. Furthermore, the analysis of neuronal maintenance and disease-causing effects is a central component of neurological investigations, which include proteomic approaches. Proteomics allows the identification of thousands of proteins through descriptive and comparative analyses and can provide a detailed overview of a distinct cellular state. Such analyses often require the isolation of individual cell types or subcellular components to investigate specific questions. This review provides an overview of the currently applied state-of-the-art prefractionation strategies in this field.


Assuntos
Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteoma/metabolismo , Proteômica/métodos , Humanos
17.
Sci Rep ; 5: 11438, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126808

RESUMO

Phosphospecific enrichment techniques and mass spectrometry (MS) are essential tools for comprehending the cellular phosphoproteome. Here, we report a fast and simple approach for low sequence-bias phosphoserine (pS) peptide capture and enrichment that is compatible with low biological or clinical sample input. The approach exploits molecularly imprinted polymers (MIPs, "plastic antibodies") featuring tight neutral binding sites for pS or pY that are capable of cross-reacting with phosphopeptides of protein proteolytic digests. The versatility of the resulting method was demonstrated with small samples of whole-cell lysate from human embryonic kidney (HEK) 293T cells, human neuroblastoma SH-SY5Y cells, mouse brain or human cerebrospinal fluid (CSF). Following pre-fractionation of trypsinized proteins by strong cation exchange (SCX) chromatography, pS-MIP enrichment led to the identification of 924 phosphopeptides in the HEK 293T whole-cell lysate, exceeding the number identified by TiO2-based enrichment (230). Moreover, the phosphopeptides were extracted with low sequence bias and showed no evidence for the characteristic preference of TiO2 for acidic amino acids (aspartic and glutamic acid). Applying the method to human CSF led to the discovery of 47 phosphopeptides belonging to 24 proteins and revealed three previously unknown phosphorylation sites.


Assuntos
Anticorpos/metabolismo , Impressão Molecular/métodos , Fosfopeptídeos/metabolismo , Plásticos/química , Sequência de Aminoácidos , Animais , Líquido Cefalorraquidiano/metabolismo , Cromatografia por Troca Iônica , Cromatografia Líquida , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosforilação , Fosfosserina/metabolismo , Proteômica , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray
18.
Cardiovasc Res ; 99(4): 648-56, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23764881

RESUMO

AIMS: Titin-based myofilament stiffness is defined by the expression levels of the cardiac titin-isoforms, N2B and N2BA, and by phosphorylation of the elastic titin domains N2-B unique sequence (N2-Bus) and PEVK. Phosphorylation of the N2-Bus by cGMP-dependent protein kinase (PKG) or cAMP-dependent protein kinase (PKA) decreases titin stiffness, whereas phosphorylation of the PEVK-domain by PKC increases it. We aimed to identify specific sites within the N2-Bus phosphorylated by PKA and PKG and to determine whether differential changes in titin domain phosphorylation could affect passive stiffness in human failing hearts. METHODS AND RESULTS: Using mass spectrometry, we identified seven partly conserved PKA/PKG-targeted phosphorylation motifs in human and rat N2-Bus. Polyclonal antibodies to pSer4185, pSer4010, and pSer4099 in the N2-Bus, and to pSer11878 in the PEVK-region were used to quantify titin-domain phosphorylation by western blot analyses of a set of human donor and failing hearts with similar titin-isoform composition. Passive tension determined in skinned human myocardial fibre preparations was significantly increased in failing compared with donor hearts, notably at shorter sarcomere lengths where titin contributes most to total passive tension. Phosphorylation of Ser4185, Ser4010, and Ser4099 in the N2-Bus was significantly reduced in failing hearts, whereas phosphorylation of Ser11878 in the PEVK-region was increased compared with donor hearts. CONCLUSION: We conclude that hypo-phosphorylation of the N2-Bus and hyper-phosphorylation of the PEVK domain can act complementary to elevate passive tension in failing human hearts. Differential changes in titin-domain phosphorylation may be important to fine-tune passive myocardial stiffness and diastolic function of the heart.


Assuntos
Conectina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/fisiologia , Sequência de Aminoácidos , Animais , Conectina/química , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Humanos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Ratos
19.
Methods Mol Biol ; 893: 345-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22665310

RESUMO

Many cellular processes are regulated by reversible phosphorylation to change the activity state of proteins. One example is cytochrome c oxidase (COX) with its important function for energy metabolism in the mitochondria. The phosphorylation of this enzyme is a prerequisite for the allosteric ATP-inhibition and therefore necessary to adapt energy production to ATP demand of the cell. Its hydrophobic nature hampers the recognition of phosphorylated amino acids in most subunits of this complex, and as a consequence, only a few phosphorylation sites were identified by mass spectrometry. We describe here a method that enables the analysis of integral membrane proteins by chemical cleavage with cyanogen bromide (BrCN), a method that improves the mass spectrometric detection of hydrophobic proteins. The low abundance of phosphopeptides requires efficient enrichment techniques, such as TiO(2)-based methods. However, this strategy failed in our hands when just BrCN-cleaved peptides were used. Only an additional size-reduction with trypsin produced peptides with optimal properties for enrichment and MS-identification. Another bottleneck was the correct assignment of phosphoserine and phosphothreonine because peptide-ion fragmentation by collision induced dissociation (CID) often results in neutral loss of HPO(3) or H(2)PO(4) from the precursor, decreasing fragmentations that define the peptide sequence and the phosphorylation site. The additional usage of electron transfer dissociation (ETD) as an alternative fragmentation method enabled the precise assignment of the phosphorylated amino acids. In a total of six, new phosphorylation sites of four COX-subunits were identified by this strategy.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Bovinos , Cromatografia de Fase Reversa , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Fragmentos de Peptídeos/química , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosforilação , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Tripsina/química
20.
Insect Biochem Mol Biol ; 42(4): 240-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210150

RESUMO

Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Insetos/metabolismo , Triatoma/enzimologia , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/isolamento & purificação , Cromatografia de Afinidade , DNA Complementar/química , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Intestinos/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA , Triatoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa