Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Opt Lett ; 48(7): 1778-1781, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221764

RESUMO

We demonstrate and discuss the integration of Bragg gratings in aerosol-jetted polymer optical waveguides, produced in the optical assembly and connection technology for component-integrated bus systems (OPTAVER) process. By using a femtosecond laser and adaptive beam shaping, an elliptical focal voxel generates different types of single pulse modification by nonlinear absorption in the waveguide material, which are arranged periodically to form Bragg gratings. Integration of a single grating structure or, alternatively, an array of Bragg grating structures in the multimode waveguide yields a pronounced reflection signal with typical multimodal properties, i.e., a number of reflection peaks with non-Gaussian shapes. However, the main wavelength of reflection, located around 1555 nm, is evaluable by means of an appropriate smoothing algorithm. When loaded by mechanical bending, a pronounced Bragg wavelength shift of this reflected peak up to 160 pm is detected. This demonstrates that the additively manufactured waveguides can be used not only for signal transmission but also as a sensor.

2.
Opt Lett ; 47(8): 2024-2027, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427327

RESUMO

We present an artificial birefringent space-variant polarization converter for the near infrared, λ = 1550 nm. Each hollow waveguide has a rectangular shape with lateral dimensions of 1550 nm in the x-direction and 1034 nm as the largest length in the y-direction. The whole device consists of approximately 2000 × 2500 hollow waveguides realized in a 2-µm-thick gold structure. They are separated by sidewalls with a width of less than 500 nm. By proper choice of the lateral widths of the individual holes, a pixel-wise polarization conversion of an incoming wave field is possible. By suitable choice of the fabrication parameters, a birefringent phase shift up to 2π can be achieved. Hence, the structure is able to fully convert the state of polarization, e.g., from linear to circular. For fabrication of the device, femtosecond 3D direct laser writing was combined with electroplating. Here, we describe the operation of our device as a space-variant polarization converter by measuring the angle-dependent transmitted power and by calculating the ellipticity and the phase delay dependent on position as well as the azimuth angle from the experimentally determined powers.

3.
Sensors (Basel) ; 22(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458848

RESUMO

We present an in situ process monitoring approach for remote fiber laser cutting, which is based on evaluating images from a high-speed camera. A specifically designed image processing algorithm allows the distinction between complete and incomplete cuts by analyzing spectral and geometric information of the melt pool from the captured images of the high-speed camera. The camera-based monitoring system itself is fit to a conventional laser deflection unit for use with high-power fiber lasers, with the optical detection path being coaxially aligned to the incident laser. Without external illumination, the radiation of the melt from the process zone is recorded in the visible spectral range from the top view and spatially and temporally resolved. The melt pool size and emitted sparks are evaluated in dependence of machining parameters such as feed rate, cycles, and focus position during cutting electrical sheets.

4.
Opt Express ; 29(15): 23477-23486, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614612

RESUMO

We report on the fabrication of rectangular microchannels with vertical sidewalls in fused silica by laser backside ablation. A 515 nm femtosecond laser is focused by an objective with a NA of 0.5 through the sample on the glass/air interface, allowing processing from the backside into the bulk material. Experimental investigations reveal a logarithmically increasing depth of the channels with an increasing number of scans, while keeping the focal position fixed. A certain number of scans has to be applied to generate rectangular shaped channels while their depth can be controlled by the applied fluence from 2.64 µm to 13.46 µm and a corresponding ablation roughness Ra between 0.20 µm and 0.33 µm. The channel width can be set directly via the number of parallel ablated lines demonstrated in a range from 10 µm to 50 µm. By adjusting the focal position after each scan the channel depth can be extended to 49.77 µm while maintaining a rectangular channel geometry. Finally, concentric rings are ablated to demonstrate the flexibility of the direct writing process.

5.
Opt Lett ; 46(2): 282-285, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449008

RESUMO

We report on micromilling cavities into fused silica by a 1030 nm femtosecond laser using 2.17 GHz bursts. The milled cavities show an increased depth per layer for a higher number of pulses per burst while the ablation efficiency is also increased. The maximum ablation efficiency for the optimum fluence achieved in our experiments is 3.05mm3/min/W for a burst number of 10, which is 7.4 times higher than for the non-burst condition (0.41mm3/min/W). Furthermore, the ablation threshold for each sub-pulse is significantly reduced from 0.64J/cm2 for the non-burst condition to 0.15J/cm2 for 10 bursts. Beside the ablation efficiency, the surface roughness is also increased with the increasing burst number, while two ablation behaviors can be distinguished, namely, a gentle ablation regime for lower burst numbers and a coarse ablation regime, dominated by breaking out the surface rather than ablating it.

6.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502721

RESUMO

In this contribution, we compare basic neural networks with convolutional neural networks for cut failure classification during fiber laser cutting. The experiments are performed by cutting thin electrical sheets with a 500 W single-mode fiber laser while taking coaxial camera images for the classification. The quality is grouped in the categories good cut, cuts with burr formation and cut interruptions. Indeed, our results reveal that both cut failures can be detected with one system. Independent of the neural network design and size, a minimum classification accuracy of 92.8% is achieved, which could be increased with more complex networks to 95.8%. Thus, convolutional neural networks reveal a slight performance advantage over basic neural networks, which yet is accompanied by a higher calculation time, which nevertheless is still below 2 ms. In a separated examination, cut interruptions can be detected with much higher accuracy as compared to burr formation. Overall, the results reveal the possibility to detect burr formations and cut interruptions during laser cutting simultaneously with high accuracy, as being desirable for industrial applications.


Assuntos
Redes Neurais de Computação , Instrumentos Cirúrgicos , Lasers
7.
Sensors (Basel) ; 21(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477838

RESUMO

In this publication, we use a small convolutional neural network to detect cut interruptions during laser cutting from single images of a high-speed camera. A camera takes images without additional illumination at a resolution of 32 × 64 pixels from cutting steel sheets of varying thicknesses with different laser parameter combinations and classifies them into cuts and cut interruptions. After a short learning period of five epochs on a certain sheet thickness, the images are classified with a low error rate of 0.05%. The use of color images reveals slight advantages with lower error rates over greyscale images, since, during cut interruptions, the image color changes towards blue. A training set on all sheet thicknesses in one network results in tests error rates below 0.1%. This low error rate and the short calculation time of 120 µs on a standard CPU makes the system industrially applicable.

8.
Sensors (Basel) ; 21(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205166

RESUMO

In this article, we summarize our investigations on optimized 248 nm deep ultraviolet (UV) fabrication of highly stable epoxy polymer Bragg grating sensors and their application for biomedical purposes. Employing m-line spectroscopy, deep UV photosensitivity of cross-linked EpoCore thin films in terms of responding refractive index change is determined to a maximum of Δn = + (1.8 ± 0.2) × 10-3. All-polymer waveguide Bragg gratings are fabricated by direct laser irradiation of lithographic EpoCore strip waveguides on compatible Topas 6017 substrates through standard +1/-1-order phase masks. According near-field simulations of realistic non-ideal phase masks provide insight into UV dose-dependent characteristics of the Bragg grating formation. By means of online monitoring, arising Bragg reflections during grating inscription via beforehand fiber-coupled waveguide samples, an optimum laser parameter set for well-detectable sensor reflection peaks in respect of peak strength, full width at half maximum and grating attenuation are derived. Promising blood analysis applications of optimized epoxy-based Bragg grating sensors are demonstrated in terms of bulk refractive index sensing of whole blood and selective surface refractive index sensing of human serum albumin.


Assuntos
Lasers , Refratometria , Humanos , Polímeros
9.
Opt Express ; 28(18): 26207-26217, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906897

RESUMO

We report on the fabrication and evaluation of a sharp tip negative axicon paving the way for applications in high-power ultrashort pulsed laser systems. The negative axicon is manufactured by applying a two-step all laser-based process chain consisting of ultrashort pulsed laser ablation and CO2 laser polishing finishing the component in less than 5 minutes. The finalized negative axicon reveals a surface roughness of 18 nm, fulfilling optical quality. Two measurement setups, including the ultrashort pulsed laser itself, are used to evaluate the formation of Bessel beams in detail. By applying a focusing lens behind the negative axicon, well-developed Bessel beams are generated while their lengths depend on the distance between the negative axicon and the lens. Furthermore, the diameter of the Bessel beams increase strongly with the propagation distance. By adding a second focusing lens, Bessel beams are generated at its focal position, being almost invariant of its position. Hence, the typical Bessel beam intensity distribution is observed over an entire moving range of this second lens of 300 mm. While these Bessel beams show superior quality in terms of sharp peaks with homogeneous concentric rings, only minor deviations in intensity and diameter are observed over the moving range.

10.
Opt Express ; 28(4): 5801-5811, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121795

RESUMO

In this contribution, we report on the generation of internal microchannels with basically unlimited channel length inside of PMMA bulk material by femtosecond laser. A precisely controllable and stable circular channel cross section is obtained by using a spatial light modulator to compensate the writing depth depending spherical aberration. Furthermore, the generation of a rotatable elliptical input beam by adaptive optics ensures a fitting of the beam shaping to the writing direction. In this study, we report on both, the effect of the ellipticity of the input beam and the effect of a correction of the spherical aberration on the circularity of the resulting internal microchannels. Moreover, we demonstrate the application of this writing technique by creating microfluidic testing structures inside of a transparent standard polymer.

11.
Opt Express ; 28(12): 18077-18084, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680008

RESUMO

We report on a femtosecond laser based fabrication technique that enables simultaneous single-step generation of optical waveguides and Bragg gratings inside bulk cyclic olefin copolymers. Due to the nonlinear absorption of focused and spatially modulated laser radiation with a wavelength of 514 nm and a pulse duration of 450 fs, a modification concluding a refractive index shift increase inside the substrate can be achieved. A sophisticated characterization of the generated waveguides by means of an elaborate cut-back method reveals a maximum attenuation of 3.2 dB/cm. Additionally, a Mach-Zehnder interferometer is used to examine the waveguide's refractive index profile. The integrated Bragg grating structures exhibit reflectivities up to 95 % and a spectral full width at half maximum of 288 pm, at a Bragg wavelength of 1582 nm, whereas the grating period can be deliberately chosen by adapting the fabrication parameters. Thus, due to its increased flexibility and the resulting dispensability of cost-intensive phase masks, this method constitutes an especially promising fabrication process for polymer Bragg gratings inside of bulk materials.

12.
Opt Express ; 28(4): 5715-5730, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121787

RESUMO

Laser-based fabrication can be an alternative technology to mechanical grinding and polishing processes. However, the performance of these elements in real applications still needs to be validated. In this paper, we demonstrate that the subtractive fabrication technology is able to produce high-quality axicons from fused silica, which can be efficiently used for glass processing. We comprehensively investigate axicons, fabricated by ultrashort pulsed laser ablation with subsequent CO2 laser polishing, and compare their performance with commercially available axicons. We show that laser-fabricated axicons are comparable in quality with a precision commercial axicon. Furthermore, we demonstrate the intra-volume glass modification and dicing, utilising mJ-level laser pulses. We show that the tilting operation of the laser-fabricated axicons results in the formation of directional transverse cracks, which significantly enhance the 1 mm-thick glass dicing process.

13.
Opt Lett ; 45(19): 5510-5513, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001933

RESUMO

In this Letter, we report on significantly improved surrounding RI sensitivity of epoxy polymer waveguide Bragg grating sensors. Uniform Bragg gratings were generated inside flat rectangular epoxy waveguides near the cutoff regime using standard phase mask excimer laser writing. Thickness controlled nanolayers of high-index titanium dioxide were deposited homogeneously on the waveguide sensor's surface area by repeated reactive sputter processing. Maximum Bragg wavelength shifts as high as 74.22 nm, as well as maximum sensitivities around 523 nm/RI unit corresponding to a minimum RI resolution of 1.9⋅10-6, could be obtained by employing a ∼75nm thick titanium dioxide coating.

14.
Opt Lett ; 45(16): 4498, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796992

RESUMO

We present an erratum to our Letter [Opt. Lett.45, 3601 (2020)OPLEDP0146-959210.1364/OL.395341]. Labeling errors in two figures and an incorrect sentence are revised. The corrections have no influence on the conclusions of the original Letter.

15.
Opt Lett ; 45(13): 3601-3604, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630909

RESUMO

This Letter demonstrates a novel, to the best of our knowledge, hydrogen sensor based on a polymer planar Bragg grating coated with Pt-loaded WO3-SiO2. The reflected Bragg signal shows a distinct peak splitting correlated to substrate anisotropies originating from the injection molding process. Especially at low H2 concentrations, both sensing peaks exhibit an outstanding response to the heat generated by the exothermic reaction between hydrogen molecules and coating. Thereby, a hydrogen volume ratio of 50 ppm leads to a Bragg wavelength shift of -37pm, which yields an outstandingly low detection limit of only 5 ppm H2 in air. Thus, functionalized polymer planar Bragg gratings are eminently suitable for H2 leak detection applications.

16.
Sensors (Basel) ; 20(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977452

RESUMO

This article proposes and demonstrates a robust microstructure-based fiber-to-chip coupling scheme for planar Bragg grating devices. A polymer planar Bragg grating substrate is manufactured and microstructured by means of a micromilling process, while the respective photonic structures are generated by employing a sophisticated single-writing UV-exposure method. A stripped standard single mode fiber is inserted into the microstructure, which is filled with a UV-curable adhesive, and aligned with the integrated waveguide. After curing, final sensor assembly and thermal treatment, the proposed coupling scheme is capable of withstanding pressures up to 10 bar, at room temperature, and pressures up to 7.5 bar at an elevated temperature of 120 °C. Additionally, the coupling scheme is exceedingly robust towards tensile forces, limited only by the tensile strength of the employed single mode fiber. Due to its outstanding robustness, the coupling scheme enables the application of planar Bragg grating devices in harsh environments. This fact is underlined by integrating a microstructure-coupled photonic device into the center of a commercial-grade carbon fiber-reinforced polymer specimen. After its integration, the polymer-based Bragg grating sensor still exhibits a reflection peak with a dynamic range of 24 dB, and can thus be employed for sensing purposes.

17.
Sensors (Basel) ; 19(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547497

RESUMO

Flexible epoxy waveguide Bragg gratings are fabricated on a low-modulus TPX™ polymethylpentene polyolefin substrate for an easy to manufacture and low-cost optomechanical sensor pad providing exceedingly multipurpose application potentials. Rectangular EpoCore negative resist strip waveguides are formed employing standard UV mask lithography. Highly persistent Bragg gratings are inscribed directly into the channel waveguides by permanently modifying the local refractive indices through a well-defined KrF excimer laser irradiated +1/-1 order phase mask. The reproducible and vastly versatile sensing capabilities of this easy-to-apply optomechanical sensor pad are demonstrated in the form of an optical pickup for acoustic instruments, a broadband optical accelerometer, and a biomedical vital sign sensor monitoring both respiration and pulse at the same time.

18.
Sensors (Basel) ; 19(3)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717349

RESUMO

Trichlorofluoromethane was once a promising and versatile applicable chlorofluorocarbon. Unaware of its ozone-depleting character, for a long time it was globally applied as propellant and refrigerant and thus led to significant thinning of the ozone layer and contributed to the formation of the so-called ozone hole. Although production and application of this substance were gradually reduced at an early stage, we still face the consequences of its former careless use. Today, trichlorofluoromethane is released during recycling processes of waste cooling devices, traded on the black market, and according to recent findings still illegally manufactured. Here, we present an optical sensor device for real-time in-situ detection and measurement of this environmentally harmful chlorofluorocarbon. The described sensor is based on a planar Bragg grating that is functionalized with cyclodextrin derivatives and operates on the principle of a chemical sensor. In our study, the sensor is sensitized using per-methyl-, per-ethyl-, and per-allyl-substituted α -, ß -, and γ -cyclodextrins as affinity materials for airborne trichlorofluoromethane. These functional coatings have been proven to be highly efficient, as an up to 400-times stronger signal deflection could be achieved compared to an identical but uncoated sensor. The presented sensor device shows instantaneous response to trichlorofluoromethane exposure, and features a limit-of-detection of less than 25 ppm, depending on the applied affinity material.

19.
Opt Express ; 26(18): 23287-23294, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184982

RESUMO

We report on the fabrication of an axicon by applying a two-step manufacturing process including a 1030 nm femtosecond and a 10.6 µm CO2 laser. First, the pre-defined axicon geometry is generated by high-precision femtosecond layer-by-layer ablation. In order to meet high surface quality requirements, inevitable stipulated for optical use, the surface of the thus structured axicon is smoothened by a subsequent CO2 laser polishing process. The finalized axicon fulfills optical quality as the surface roughness Ra is significantly reduced from 0.56 µm to 34 nm. For the evaluation of the optical quality, the axicon is placed in a measurement setup including the femtosecond laser. Comparison between the calculated Bessel beam for an ideal axicon and the quasi-Bessel beam generated and measured by the fabricated axicon reveals excellent agreement, verifying our precise manufacturing method.

20.
Opt Lett ; 43(14): 3321-3324, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004496

RESUMO

In this Letter, we demonstrate a high-temperature stable polymer planar waveguide Bragg grating based on cyclo-olefin copolymers. The high glass transition temperature of the polymer material amounting to 178°C, in conjunction with a high-temperature stable UV-curable adhesive used to connect the polymer sensor to a standard single-mode fiber, enables temperature readings of up to 160°C while exhibiting a temperature sensitivity of -7.3 pm/°C. The reflected power of the Bragg wavelength remains constant up to a temperature of 130°C before declining at higher temperatures with an overall reduction of 2.5 dB at 160°C. However, decreasing temperature results in a complete recovery of the peak power, facilitating steam pressure sterilization (129°C, 0.17 MPa) of the polymer planar waveguide Bragg grating.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa