Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(12): 10037-10045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902909

RESUMO

BACKGROUND: Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays. METHODS AND RESULTS: The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation. CONCLUSIONS: The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.


Assuntos
Células-Tronco Mesenquimais , Sizofirano , Humanos , Osteogênese/fisiologia , Sizofirano/metabolismo , Tecido Adiposo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38315659

RESUMO

The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.

3.
Pathol Res Pract ; 216(5): 152919, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32171553

RESUMO

Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.


Assuntos
Melatonina/farmacologia , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa