Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(6): 063302, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31254995

RESUMO

Computational fluid dynamics simulations are performed to design gas nozzles, associated with a 1000 bars backing pressure system, capable of generating supersonic gas jet targets with densities close to the critical density for 1053 nm laser radiation (1021 cm-3). Such targets should be suitable for laser-driven ion acceleration at a high repetition rate. The simulation results are compared to the density profiles measured by interferometry, and characterization of the gas jet dynamics is performed using strioscopy. Proton beams with maximum energies up to 2 MeV have been produced from diatomic hydrogen gas jet targets in a first experiment.

2.
Rev Sci Instrum ; 87(2): 02B701, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932064

RESUMO

Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d'Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results concerning emittance and time profile development as a function of the temperature for different ion source versions will be presented.

3.
Rev Sci Instrum ; 85(2): 02B914, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593619

RESUMO

SPIRAL2 (Système de Production d'Ions Radioactifs Accélérés en Ligne) is a research facility under construction at GANIL (Grand Accélérateur National d'Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2. The aim of this project is to find the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results about the new ion source geometry will be presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa