Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
N Engl J Med ; 376(10): 928-938, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-25426834

RESUMO

BACKGROUND: The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. METHODS: We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. RESULTS: In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle-unit dose than in the group that received the 2×1010 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×1011 particle-unit dose than among those who received the 2×1010 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle-unit dose. CONCLUSIONS: Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At the 2×1011 particle-unit dose, glycoprotein Zaire-specific antibody responses were in the range reported to be associated with vaccine-induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3-EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adenovirus dos Símios , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Febre/etiologia , Vetores Genéticos , Glicoproteínas/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Linfócitos T/fisiologia
2.
Proc Natl Acad Sci U S A ; 114(10): 2711-2716, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223498

RESUMO

A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Vacinas Atenuadas/administração & dosagem , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/patogenicidade , Esporozoítos/imunologia , Esporozoítos/patogenicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/parasitologia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia
3.
Lancet ; 391(10120): 552-562, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29217376

RESUMO

BACKGROUND: The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. METHODS: We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18-35 years in VRC19 and 18-50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. FINDINGS: VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. INTERPRETATION: VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. FUNDING: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Zika virus/imunologia , Adulto , Citocinas/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vacinas de DNA/efeitos adversos , Vacinas Virais/efeitos adversos , Adulto Jovem , Infecção por Zika virus/prevenção & controle
4.
PLoS Med ; 15(1): e1002493, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364886

RESUMO

BACKGROUND: VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. METHODS AND FINDINGS: This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccine Research Center (VRC) at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD). The age range of the study volunteers was 21-50 years; 51% of study volunteers were male and 49% were female. Primary objectives were safety and tolerability of VRC01LS intravenous (IV) infusions at 5, 20, and 40 mg/kg infused once, 20 mg/kg given three times at 12-week intervals, and subcutaneous (SC) delivery at 5 mg/kg delivered once, or three times at 12-week intervals. Secondary objectives were pharmacokinetics (PK), serum neutralization activity, and development of antidrug antibodies. Enrollment began on November 16, 2015, and concluded on August 23, 2017. This report describes the safety data for the first 37 volunteers who received administrations of VRC01LS. There were no serious adverse events (SAEs) or dose-limiting toxicities. Mild malaise and myalgia were the most common adverse events (AEs). There were six AEs assessed as possibly related to VRC01LS administration, and all were mild in severity and resolved during the study. PK data were modeled based on the first dose of VRC01LS in the first 25 volunteers to complete their schedule of evaluations. The mean (±SD) serum concentration 12 weeks after one IV administration of 20 mg/kg or 40 mg/kg were 180 ± 43 µg/mL (n = 7) and 326 ± 35 µg/mL (n = 5), respectively. The mean (±SD) serum concentration 12 weeks after one IV and SC administration of 5 mg/kg were 40 ± 3 µg/mL (n = 2) and 25 ± 5 µg/mL (n = 9), respectively. Over the 5-40 mg/kg IV dose range (n = 16), the clearance was 36 ± 8 mL/d with an elimination half-life of 71 ± 18 days. VRC01LS retained its expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. Potential limitations of this study include the small sample size typical of Phase I trials and the need to further describe the PK properties of VRC01LS administered on multiple occasions. CONCLUSIONS: The human bnMAb VRC01LS was safe and well tolerated when delivered intravenously or subcutaneously. The half-life was more than 4-fold greater when compared to wild-type VRC01 historical data. The reduced clearance and extended half-life may make it possible to achieve therapeutic levels with less frequent and lower-dose administrations. This would potentially lower the costs of manufacturing and improve the practicality of using passively administered monoclonal antibodies (mAbs) for the prevention of HIV-1 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT02599896.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Anti-HIV/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Infusões Intravenosas , Infusões Subcutâneas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
J Infect Dis ; 211(4): 549-57, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225676

RESUMO

BACKGROUND: Ebolavirus and Marburgvirus cause severe hemorrhagic fever with high mortality and are potential bioterrorism agents. There are no available vaccines or therapeutic agents. Previous clinical trials evaluated transmembrane-deleted and point-mutation Ebolavirus glycoproteins (GPs) in candidate vaccines. Constructs evaluated in this trial encode wild-type (WT) GP from Ebolavirus Zaire and Sudan species and the Marburgvirus Angola strain expressed in a DNA vaccine. METHODS: The VRC 206 study evaluated the safety and immunogenicity of these DNA vaccines (4 mg administered intramuscularly by Biojector) at weeks 0, 4, and 8, with a homologous boost at or after week 32. Safety evaluations included solicited reactogenicity and coagulation parameters. Primary immune assessment was done by means of GP-specific enzyme-linked immunosorbent assay. RESULTS: The vaccines were well tolerated, with no serious adverse events; 80% of subjects had positive enzyme-linked immunosorbent assay results (≥30) at week 12. The fourth DNA vaccination boosted the immune responses. CONCLUSIONS: The investigational Ebolavirus and Marburgvirus WT GP DNA vaccines were safe, well tolerated, and immunogenic in this phase I study. These results will further inform filovirus vaccine research toward a goal of inducing protective immunity by using WT GP antigens in candidate vaccine regimens. CLINICAL TRIALS REGISTRATION: NCT00605514.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Marburgvirus/imunologia , Vacinas de DNA/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , ELISPOT , Feminino , Humanos , Masculino , Marburgvirus/genética , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Adulto Jovem
6.
J Infect Dis ; 208(3): 418-22, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23633407

RESUMO

BACKGROUND: H5 DNA priming was previously shown to improve the antibody response to influenza A(H5N1) monovalent inactivated vaccine (MIV) among individuals for whom there was a 24-week interval between prime and boost receipt. This study defines the shortest prime-boost interval associated with an improved response to MIV. METHODS: We administered H5 DNA followed by MIV at intervals of 4, 8, 12, 16, or 24 weeks and compared responses to that of 2 doses of MIV (prime-boost interval, 24 weeks). RESULTS: H5 DNA priming with an MIV boost ≥12 weeks later showed an improved response, with a positive hemagglutination inhibition (HAI) titer in 91% of recipients (geometric mean titer [GMT], 141-206), compared with 55%-70% of recipients with an H5 DNA and MIV prime-boost interval of ≤8 weeks (GMT, 51-70) and 44% with an MIV-MIV prime-boost interval of 24 weeks (GMT, 27). CONCLUSION: H5 DNA priming enhances antibody responses after an MIV boost when the prime-boost interval is 12-24 weeks. Clinical Trials Registration. NCT01086657.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização Secundária/métodos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Adolescente , Adulto , Anticorpos Antivirais/sangue , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
7.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587079

RESUMO

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Monoclonais/farmacologia
8.
NPJ Vaccines ; 9(1): 171, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289377

RESUMO

The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22). Vaccination with H10ssF was safe and well tolerated with only mild systemic and local reactogenicity reported. No serious adverse events occurred. Vaccination significantly increased homologous H10 HA stem binding and neutralizing antibodies at 2 weeks after both first and second vaccinations, and these responses remained above baseline at 40 weeks. Heterologous H3 and H7 binding antibodies also significantly increased after each vaccination and remained elevated throughout the study. These data indicate that the group 2 HA stem nanoparticle vaccine is safe and induces stem-directed binding and neutralizing antibodies.

9.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075129

RESUMO

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Pandemias
10.
EClinicalMedicine ; 48: 101477, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35783486

RESUMO

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults. Methods: We conducted a phase I, randomized, open-label, dose-escalation trial at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Eligible participants were HIV-negative, healthy adults between 18-50 years. Participants were randomized 1:1 to receive Trimer 4571 adjuvanted with 500 mcg alum by either the subcutaneous (SC) or intramuscular (IM) route at weeks 0, 8, and 20 in escalating doses of 100 mcg or 500 mcg. The primary objectives were to evaluate the safety and tolerability of Trimer 4571 with a secondary objective of evaluating vaccine-induced antibody responses. The primary and safety endpoints were evaluated in all participants who received at least one dose of Trimer 4571. Trial results were summarized using descriptive statistics. This trial is registered at ClinicalTrials.gov, NCT03783130. Findings: Between March 7 and September 11, 2019, 16 HIV-negative participants were enrolled, including six (38%) males and ten (62%) females. All participants received three doses of Trimer 4571. Solicited reactogenicity was mild to moderate in severity, with one isolated instance of severe injection site redness (6%) following a third 500 mcg SC administration. The most commonly reported solicited symptoms included mild injection site tenderness in 14 (88%) and mild myalgia in six (38%) participants. The most frequent unsolicited adverse event attributed to vaccination was mild injection site pruritus in six (38%) participants. Vaccine-induced seropositivity occurred in seven (44%) participants and resolved in all but one (6%). No serious adverse events occurred. Trimer 4571-specific binding antibodies were detected in all groups two weeks after regimen completion, primarily focused on the glycan-free trimer base. Neutralizing antibody activity was limited to the 500 mcg dose groups. Interpretation: Trimer 4571 was safe, well tolerated, and immunogenic in this first-in-human trial. While this phase 1 trial is limited in size, our results inform and support further evaluation of prefusion-stabilized HIV-1 envelope trimers as a component of vaccine design strategies to generate broadly neutralizing antibodies against HIV-1. Funding: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

11.
Nat Med ; 28(5): 1022-1030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411076

RESUMO

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.


Assuntos
Infecções por HIV , HIV-1 , Adulto , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Dependovirus/genética , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Humanos
12.
Lancet HIV ; 6(10): e667-e679, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473167

RESUMO

BACKGROUND: Human monoclonal antibodies that potently and broadly neutralise HIV-1 are under development to prevent and treat HIV-1 infection. In this phase 1 clinical trial we aimed to determine the safety, tolerability, and pharmacokinetic profile of the broadly neutralising monoclonal antibody VRC07-523LS, an engineered variant of VRC01 that targets the CD4 binding site of the HIV-1 envelope protein. METHODS: This phase 1, open-label, dose-escalation clinical trial was done at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Individuals were recruited from the greater Washington, DC, area by IRB-approved written and electronic media. We enrolled healthy, HIV-1-negative adults aged 18-50 years. Inclusion criteria were good general health, measured through clinical laboratory tests, medical history, and physical examination. Participants self-selected into one of seven open groups during enrolment without randomisation. Four groups received a single intravenous dose of 1, 5, 20, or 40 mg/kg of VRC07-523LS, and one group received a single 5 mg/kg subcutaneous dose. Two groups received three doses of either 20 mg/kg intravenous VRC07-523LS, or 5 mg/kg subcutaneous VRC07-523LS at 12-week intervals. The primary outcome was the safety and tolerability of VRC07-523LS, assessed by dose, route, and number of administrations. This study is registered with ClinicalTrials.gov, NCT03015181. FINDINGS: Between Feb 21, 2017, and September 13, 2017, we enrolled 26 participants, including 11 (42%) men and 15 (58%) women. Two (8%) participants withdrew from the study early: one participant in group 1 enrolled in the study but never received VRC07-523LS, and one participant in group 6 chose to withdraw after a single administration. One (4%) participant in group 7 received only one of the three scheduled administrations. 17 participants received intravenous administrations and 8 participants received subcutaneous administrations. VRC07-523LS was safe and well tolerated, we observed no serious adverse events or dose-limiting toxic effects. All reported local and systemic reactogenicity was mild to moderate in severity. The most commonly reported symptoms following intravenous administration were malaise or myalgia in three (18%) participants and headache or chills in two (12%) participants. The most commonly reported symptoms following subcutaneous administration were pain and tenderness in four participants (50%) and malaise or headache in three (38%) participants. INTERPRETATION: Safe and well tolerated, VRC07-523LS is a strong and practical candidate for inclusion in HIV-1 prevention and therapeutic strategies. The results from this trial also indicate that an HIV-1 broadly neutralising monoclonal antibody engineered for improved pharmacokinetic and neutralisation properties can be safe for clinical use. FUNDING: National Institutes of Health.


Assuntos
Anticorpos Monoclonais/farmacocinética , Infecções por HIV/tratamento farmacológico , Administração Cutânea , Administração Intravenosa , Adulto , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
PLoS One ; 11(11): e0166393, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27846256

RESUMO

BACKGROUND: VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. METHODS: First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. RESULTS: Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. CONCLUSIONS: Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. TRIAL REGISTRATION: ClinicalTrials.gov NCT00479999.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Anticorpos Antivirais/imunologia , Infecções por HIV/genética , Infecções por HIV/prevenção & controle , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Adenoviridae/genética , Adolescente , Adulto , Formação de Anticorpos/imunologia , Feminino , Vetores Genéticos , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Imunização Secundária , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
14.
Nat Med ; 22(6): 614-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27158907

RESUMO

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina/imunologia , Fígado/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Parasitemia/prevenção & controle , Plasmodium falciparum/imunologia , Administração Intravenosa , Adolescente , Adulto , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Fígado/citologia , Macaca mulatta , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Esporozoítos/imunologia , Linfócitos T/imunologia , Adulto Jovem
15.
Contemp Clin Trials ; 44: 112-118, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26275339

RESUMO

Annual influenza vaccination reduces the risks of influenza when the vaccines are well matched to circulating strains, but development of an approach that induces broader and more durable immune responses would be beneficial. We conducted two companion Phase 1 studies, VRC 307 and VRC 309, over sequential seasons (2008-2009 and 2009-2010) in which only the influenza B strain component of the vaccines differed. Objectives were safety and immunogenicity of prime-boost vaccination schedules. A schedule of DNA vaccine encoding for seasonal influenza hemagglutinins (HA) prime followed by seasonal trivalent influenza inactivated vaccine (IIV3) boost (HA DNA-IIV3) was compared to placebo (PBS)-IIV3 or IIV3-IIV3. Cumulatively, 111 adults were randomized to HA DNA-IIV3 (n=66), PBS-IIV3 (n=25) or IIV3-IIV3 (n=20). Safety was assessed by clinical observations, laboratory parameters and 7-day solicited reactogenicity. The seasonal HA DNA prime-IIV3 boost regimen was evaluated as safe and well tolerated. There were no serious adverse events. The local and systemic reactogenicity for HA DNA, IIV and placebo were reported predominantly as none or mild within the first 5days post-vaccination. There was no significant difference in immunogenicity detected between the treatment groups as evaluated by hemagglutination inhibition (HAI) assay. The studies demonstrated the safety and immunogenicity of seasonal HA DNA-IIV3 regimen, but the 3-4week prime-boost interval was suboptimal for improving influenza-specific immune responses. This is consistent with observations in avian H5 DNA vaccine prime-boost studies in which a long interval, but not a short interval, was associated with improved immunogenicity. TRIAL REGISTRATION: NCT00858611 for VRC 307 and NCT00995982 for VRC 309.

16.
Sci Transl Med ; 7(319): 319ra206, 2015 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-26702094

RESUMO

Passive immunization with HIV-1-neutralizing monoclonal antibodies (mAbs) is being considered for prevention and treatment of HIV-1 infection. As therapeutic agents, mAbs could be used to suppress active virus replication, maintain suppression induced by antiretroviral therapy (ART), and/or decrease the size of the persistent virus reservoir. We assessed the impact of VRC01, a potent human mAb targeting the HIV-1 CD4 binding site, on ART-treated and untreated HIV-1-infected subjects. Among six ART-treated individuals with undetectable plasma viremia, two infusions of VRC01 did not reduce the peripheral blood cell-associated virus reservoir measured 4 weeks after the second infusion. In contrast, six of eight ART-untreated, viremic subjects infused with a single dose of VRC01 experienced a 1.1 to 1.8 log10 reduction in plasma viremia. The two subjects with minimal responses to VRC01 were found to have predominantly VRC01-resistant virus before treatment. Notably, two subjects with plasma virus load <1000 copies/ml demonstrated virus suppression to undetectable levels for over 20 days until VRC01 levels declined. Among the remaining four subjects with baseline virus loads between 3000 and 30,000 copies, viremia was only partially suppressed by mAb infusion, and we observed strong selection pressure for the outgrowth of less neutralization-sensitive viruses. In summary, a single infusion of mAb VRC01 significantly decreased plasma viremia and preferentially suppressed neutralization-sensitive virus strains. These data demonstrate the virological effect of this neutralizing antibody and highlight the need for combination strategies to maintain virus suppression.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Doença Crônica , Anticorpos Anti-HIV/sangue , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Humanos , Cinética , Pessoa de Meia-Idade , Carga Viral/imunologia , Adulto Jovem
17.
Science ; 341(6152): 1359-65, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23929949

RESUMO

Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.35 × 10(5) PfSPZ Vaccine and five of six nonvaccinated controls developed malaria after controlled human malaria infection (P = 0.015 in the five-dose group and P = 0.028 for overall, both versus controls). PfSPZ-specific antibody and T cell responses were dose-dependent. These data indicate that there is a dose-dependent immunological threshold for establishing high-level protection against malaria that can be achieved with IV administration of a vaccine that is safe and meets regulatory standards.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Administração Intravenosa , Adulto , Animais , Citocinas/imunologia , Feminino , Humanos , Imunidade Celular , Vacinas Antimaláricas/efeitos adversos , Masculino , Camundongos , Esporozoítos/imunologia , Linfócitos T/imunologia , Vacinação/efeitos adversos , Vacinação/métodos
18.
Lancet Infect Dis ; 11(12): 916-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21975270

RESUMO

BACKGROUND: Because the general population is largely naive to H5N1 influenza, antibodies generated to H5 allow analysis of novel influenza vaccines independent of background immunity from previous infection. We assessed the safety and immunogenicity of DNA encoding H5 as a priming vaccine to improve antibody responses to inactivated influenza vaccination. METHODS: In VRC 306 and VRC 310, two sequentially enrolled phase 1, open-label, randomised clinical trials, healthy adults (age 18-60 years) were randomly assigned to receive intramuscular H5 DNA (4 mg) at day 0 or twice, at day 0 and week 4, followed by H5N1 monovalent inactivated vaccine (MIV; 90 µg) at 4 or 24 weeks, and compared with a two-dose regimen of H5N1 MIV with either a 4 or 24 week interval. Antibody responses were assessed by haemagglutination inhibition (HAI), ELISA, neutralisation (ID(80)), and immunoassays for stem-directed antibodies. T cell responses were assessed by intracellular cytokine staining. After enrolment, investigators and individuals were not masked to group assignment. VRC 306 and VRC 310 are registered with ClinicalTrials.gov, numbers NCT00776711 and NCT01086657, respectively. FINDINGS: In VRC 306, 60 individuals were randomly assigned to the four groups (15 in each) and 59 received the vaccinations. In VRC 310, of the 21 individuals enrolled, 20 received the vaccinations (nine received a two-dose regimen of H5N1 MIV and 11 received H5 DNA at day 0 followed by H5N1 MIV at week 24). H5 DNA priming was safe and enhanced H5-specific antibody titres following an H5N1 MIV boost, especially when the interval between DNA prime and MIV boost was extended to 24 weeks. In the two studies, DNA priming with a 24-week MIV boost interval induced protective HAI titres in 21 (81%) of 26 of individuals, with an increase in geometric mean titre (GMT) of more than four times that of individuals given the MIV-MIV regimen at 4 or 24 weeks (GMT 103-206 vs GMT 27-33). Additionally, neutralising antibodies directed to the conserved stem region of H5 were induced by this prime-boost regimen in several individuals. No vaccine-related serious adverse events were recorded. INTERPRETATION: DNA priming 24 weeks in advance of influenza vaccine boosting increased the magnitude of protective antibody responses (HAI) and in some cases induced haemagglutinin-stem-specific neutralising antibodies. A DNA-MIV vaccine regimen could enhance the efficacy of H5 or other influenza vaccines and shows that anti-stem antibodies can be elicited by vaccination in man. FUNDING: National Institutes of Health.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinas de DNA/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa