Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527023

RESUMO

Modulation of growth rate in Mycobacterium tuberculosis is key to its survival in the host; particularly with regard to its adaptation during chronic infection when the growth rate is very slow. The resulting physiological changes will influence the way this pathogen interacts with the host and responds to antibiotics. Therefore, it is important that we understand how growth rate impacts antibiotic efficacy, particularly with respect to recovery/relapse. This is the first study that has asked how growth rates influence the mycobacterial responses to combinations of frontline antimycobacterials, isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA), using continuous cultures. Time-course profiles of log-transformed total viable counts for cultures, controlled at either a fast growth rate (23.1. mean generation time (MGT)) or slow growth rate (69.3h MGT), were analysed with the fitting of a mathematical model by nonlinear regression that accounted for the dilution rate in the chemostat, and profiled kill rates and recovery in culture. Using this approach, we show that populations growing more slowly were generally less susceptible to all treatments. We observed a higher kill rate associated with INH (compared to RIF or PZA) and the appearance of re-growth. In line with this observation, re-growth was not observed with RIF-exposure, which provided a slower bactericidal response. The sequential additions of RIF and PZA did not eliminate re-growth. We consider here that faster, early bactericidal activity is not what is required for successful sterilisation of M. tuberculosis, but instead slower elimination of bacilli followed by reduced recovery of the bacterial population.

2.
Antimicrob Agents Chemother ; 60(7): 3869-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26902767

RESUMO

Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic.


Assuntos
Antituberculosos/farmacologia , Citometria de Fluxo/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Ciprofloxacina/farmacologia , Isoniazida/farmacologia , Canamicina/farmacologia , Rifampina/farmacologia
3.
BMC Infect Dis ; 16: 205, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184366

RESUMO

BACKGROUND: Pyrazinamide (PZA) plays an essential part in the shortened six-month tuberculosis (TB) treatment course due to its activity against slow-growing and non-replicating organisms. We tested whether PZA preferentially targets slow growing cells of Mycobacterium tuberculosis that could be representative of bacteria that remain after the initial kill with isoniazid (INH), by observing the response of either slow growing or fast growing bacilli to differing concentrations of PZA. METHODS: M. tuberculosis H37Rv was grown in continuous culture at either a constant fast growth rate (Mean Generation Time (MGT) of 23.1 h) or slow growth rate (69.3 h MGT) at a controlled dissolved oxygen tension of 10 % and a controlled acidity at pH 6.3 ± 0.1. Cultures were exposed to step-wise increases in the concentration of PZA (25 to 500 µgml(-1)) every two MGTs, and bacterial survival was measured. PZA-induced global gene expression was explored for each increase in PZA-concentration, using DNA microarray. RESULTS: At a constant pH 6.3, actively dividing mycobacteria were susceptible to PZA, with similar responses to increasing concentrations of PZA at both growth rates. Three distinct phases of drug response could be distingished for both slow growing (69.3 h MGT) and fast growing (23.1 h MGT) bacilli. A bacteriostatic phase at a low concentration of PZA was followed by a recovery period in which the culture adapted to the presence of PZA and bacteria were actively dividing in steady-state. In contrast, there was a rapid loss of viability at bactericidal concentrations. There was a notable delay in the onset of the recovery period in quickly dividing cells compared with those dividing more slowly. Fast growers and slow growers adapted to PZA-exposure via very similar mechanisms; through reduced gene expression of tRNA, 50S, and 30S ribosomal proteins. CONCLUSIONS: PZA had an equivalent level of activity against fast growing and slow growing M. tuberculosis. At both growth rates drug-tolerance to sub-lethal concentrations may have been due to reduced expression of tRNA, 50S, and 30S ribosomal proteins. The findings from this study show that PZA has utility against more than one phenotypic sub-population of bacilli and could be re-assessed for its early bactericidal activity, in combination with other drugs, during TB treatment.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirazinamida/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , RNA de Transferência/genética , Proteínas Ribossômicas/genética
4.
Cell Surf ; 7: 100065, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34778603

RESUMO

The development of new vaccines for TB needs to be underpinned by an understanding of both the molecular and cellular mechanisms of host-pathogen interactions and how the immune response can be modulated to achieve protection from disease. Complement orchestrates many aspects of the innate and adaptive immune responses. However, little is known about the contribution of the complement pathways during TB disease, particularly with respect to mycobacterial phenotype. Extracellular communities (biofilms) of M. tuberculosis are found in the acellular rim of granulomas, during disease, and these are likely to be present in post-primary TB episodes, in necrotic lesions. Our study aimed to determine which mycobacterial cell wall components were altered during biofilm growth and how these cell wall alterations modified the complement response. We have shown that M. tuberculosis biofilms modified their cell wall carbohydrates and elicited reduced classical and lectin pathway activation. Consistent with this finding was the reduction of C3b/iC3b deposition on biofilm cell wall carbohydrate extracts. Here, we have highlighted the role of cell wall carbohydrate alterations during biofilm growth of M. tuberculosis and subsequent modulation of complement activation.

5.
Pharmaceutics ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971826

RESUMO

Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) was generated over a century ago for protection against Mycobacterium tuberculosis (Mtb) and is one the oldest vaccines still in use. The BCG vaccine is currently produced using a pellicle growth method, which is a complex and lengthy process that has been challenging to standardise. Fermentation for BCG vaccine production would reduce the complexity associated with pellicle growth and increase batch to batch reproducibility. This more standardised growth lends itself to quantification of the total number of bacilli in the BCG vaccine by alternative approaches, such as flow cytometry, which can also provide information about the metabolic status of the bacterial population. The aim of the work reported here was to determine which batch fermentation conditions and storage conditions give the most favourable outcomes in terms of the yield and stability of live M. bovis BCG Danish bacilli. We compared different media and assessed growth over time in culture, using total viable counts, total bacterial counts, and turbidity throughout culture. We applied fluorescent viability dyes and flow cytometry to measure real-time within-culture viability. Culture samples were stored in different cryoprotectants at different temperatures to assess the effect of these combined conditions on bacterial titres. Roisin's minimal medium and Middlebrook 7H9 medium gave comparable, high titres in fermenters. Flow cytometry proved to be a useful tool for enumeration of total bacterial counts and in the assessment of within-culture cell viability and cell death. Of the cryoprotectants evaluated, 5% (v/v) DMSO showed the most significant positive effect on survival and reduced the negative effects of low temperature storage on M. bovis BCG Danish viability. In conclusion, we have shown a reproducible, more standardised approach for the production, evaluation, and storage of high titre, viable, BCG vaccine.

6.
Pharmaceutics ; 12(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824778

RESUMO

Bovine tuberculosis (TB) in Great Britain adversely affects animal health and welfare and is a cause of considerable economic loss. The situation is exacerbated by European badgers (Meles meles) acting as a wildlife source of recurrent Mycobacterium bovis infection to cattle. Vaccination of badgers against TB is a possible means to reduce and control bovine TB. The delivery of vaccine in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. There are practical limitations over the volume and concentration of Bacillus of Calmette and Guérin (BCG) that can be prepared for inclusion in bait. The production of BCG in a bioreactor may overcome these issues. We evaluated the efficacy of oral, bioreactor-grown BCG against experimental TB in badgers. We demonstrated repeatable protection through the direct administration of at least 2.0 × 108 colony forming units of BCG to the oral cavity, whereas vaccination via voluntary consumption of bait containing the same preparation of BCG did not result in demonstrable protection at the group-level, although a minority of badgers consuming bait showed immunological responses and protection after challenge equivalent to badgers receiving oral vaccine by direct administration. The need to deliver oral BCG in the context of a palatable and environmentally robust bait appears to introduce such variation in BCG delivery to sites of immune induction in the badger as to render experimental studies variable and inconsistent.

7.
Methods Mol Biol ; 1736: 51-57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29322458

RESUMO

Traditional drug susceptibility methods can take several days or weeks of incubation between drug exposure and confirmation of sensitivity or resistance. In addition, these methods do not capture information about viable organisms that are not immediately culturable after drug exposure. Here, we present a rapid fluorescence detection method for assessing the susceptibility of M. tuberculosis to antibiotics. Fluorescent markers Calcein violet-AM and SYTOX-green are used for measuring cell viability or cell death and to capture information about the susceptibility of the whole population and not just those bacteria that can grow in media postexposure. Postexposure to the antibiotic, the method gives a rapid readout of drug susceptibility, as well as insights into the concentration and time-dependent drug activity following antibiotic exposure.


Assuntos
Antituberculosos/farmacologia , Citometria de Fluxo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Antituberculosos/uso terapêutico , Citometria de Fluxo/métodos , Humanos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
8.
Methods Mol Biol ; 1736: 59-73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29322459

RESUMO

There is a proportion of the M. tuberculosis population that is refractory to the bactericidal action of antituberculosis antibiotics due to phenotypic tolerance. This tolerance can be impacted by environmental stimuli and the subsequent physiological state of the organism. It may be the result of preexisting populations of slow growing/non replicating bacteria that are protected from antibiotic action. It still remains unclear how the slow growth of M. tuberculosis contributes to antibiotic resistance and antibiotic tolerance. Here, we present a method for assessing the activity of antibiotics against M. tuberculosis using continuous culture, which is the only system that can be used to control bacterial growth rate and study the impact of slow or fast growth on the organism's response to antibiotic exposure.


Assuntos
Antituberculosos/farmacologia , Técnicas Bacteriológicas , Técnicas de Cultura de Células , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/mortalidade , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/tratamento farmacológico
9.
J R Soc Interface ; 13(124)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27807274

RESUMO

Drug resistance to tuberculosis (TB) has become more widespread over the past decade. As such, understanding the emergence and fitness of antibiotic-resistant subpopulations is crucial for the development of new interventions. Here we use a simple mathematical model to explain the differences in the response to isoniazid (INH) of Mycobacterium tuberculosis cells cultured under two growth rates in a chemostat. We obtain posterior distributions of model parameters consistent with data using a Markov chain Monte Carlo (MCMC) method. We explore the dynamics of diverse INH-resistant subpopulations consistent with these data in a multi-population model. We find that the simple model captures the qualitative behaviour of the cultures under both dilution rates and also present testable predictions about how diversity is maintained in such cultures.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida/farmacologia , Modelos Biológicos , Mycobacterium tuberculosis/crescimento & desenvolvimento
10.
PLoS One ; 10(9): e0138253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382066

RESUMO

An important aim for improving TB treatment is to shorten the period of antibiotic therapy without increasing relapse rates or encouraging the development of antibiotic-resistant strains. In any M. tuberculosis population there is a proportion of bacteria that are drug-tolerant; this might be because of pre-existing populations of slow growing/non replicating bacteria that are protected from antibiotic action due to the expression of a phenotype that limits drug activity. We addressed this question by observing populations of either slow growing (constant 69.3h mean generation time) or fast growing bacilli (constant 23.1h mean generation time) in their response to the effects of isoniazid exposure, using controlled and defined growth in chemostats. Phenotypic differences were detected between the populations at the two growth rates including expression of efflux mechanisms and the involvement of antisense RNA/small RNA in the regulation of a drug-tolerant phenotype, which has not been explored previously for M. tuberculosis. Genotypic analyses showed that slow growing bacilli develop resistance to isoniazid through mutations specifically in katG codon Ser315 which are present in approximately 50-90% of all isoniazid-resistant clinical isolates. The fast growing bacilli persisted as a mixed population with katG mutations distributed throughout the gene. Mutations in katG codon Ser315 appear to have a fitness cost in vitro and particularly in fast growing cultures. Our results suggest a requirement for functional katG-encoded catalase-peroxide in the slow growers but not the fast-growing bacteria, which may explain why katG codon Ser315 mutations are favoured in the slow growing cultures.


Assuntos
Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Catalase/genética , Resistência Microbiana a Medicamentos/genética , Isoniazida/uso terapêutico , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Antituberculosos/farmacologia , Códon , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mutação Puntual , Serina/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa