Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Med ; 8(8): 841-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12091880

RESUMO

The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Separação Celular , Transplante de Células , Quimiotaxia , Feminino , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos , Fator de Crescimento Placentário , Receptores de Fatores de Crescimento/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Quimeras de Transplante , Transplante Heterólogo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
2.
Circ Res ; 94(6): 820-7, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-14764454

RESUMO

Nuclear transfer techniques have been proposed as a strategy for generating an unlimited supply of rejuvenated and histocompatible stem cells for the treatment of cardiac diseases. For this purpose, c-kit-positive fetal liver stem cells obtained from cloned embryos were injected in the border zone of infarcted mice to induce tissue reconstitution. Cloned embryos were derived from somatic cell fusion between nuclei of cultured LacZ-positive fibroblasts and enucleated oocytes of a different mouse strain. We report that regenerating myocardium replaced 38% of the scar at 1 month. The rebuilt tissue expressed LacZ and was composed of myocytes and vessels connected with the coronary circulation. Myocytes were functionally competent and expressed contractile proteins, desmin, connexin43, and N-cadherin. These structural characteristics indicated that the new myocytes were electrically and mechanically coupled. Similarly, the formed coronary arterioles and capillary structures contained blood and contributed, therefore, to tissue oxygenation. Cardiac replacement resulted in an improvement of ventricular hemodynamics and in a reduction of diastolic wall stress. These beneficial effects were obtained by stem cell transdifferentiation and commitment to the cardiac cell lineages. Myocardial growth was independent from fusion of the injected stem cells with preexisting partner cells. In conclusion, c-kit-positive stem cells derived by nuclear transfer cloning restore infarcted myocardium. Although problems currently plague nuclear transplantation, including the potential for epigenetic and imprinting abnormalities, stem cells derived from cloned embryos are sufficiently normal to repair damaged tissue in vivo. Importantly, the magnitude of myocardial regeneration obtained in this study is significantly superior to that achieved with adult bone marrow cells.


Assuntos
Células Clonais/transplante , Transplante de Tecido Fetal , Coração/fisiologia , Infarto do Miocárdio/terapia , Técnicas de Transferência Nuclear , Transplante de Células-Tronco , Animais , Diferenciação Celular , Divisão Celular , Fusão Celular , Tamanho Celular , Clonagem de Organismos , Feminino , Fibroblastos/ultraestrutura , Genes Reporter , Injeções , Óperon Lac , Fígado/citologia , Fígado/embriologia , Masculino , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Neovascularização Fisiológica , Oócitos/ultraestrutura , Proteínas Proto-Oncogênicas c-kit/análise , Regeneração , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa