Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14140-14148, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695181

RESUMO

Inspired by recent experimental work, we study the control over the laser-driven dissociation of the HeH+ ion in the electronic ground state. Shaped pulses with peak intensities below 1012 W cm-2 are obtained by phase modulation of high-intensity transform-limited femtosecond pulses. We investigate the performance of pulse shaping for a number of shaping parameters targeting both vibrational and rotational excitation pathways. The numerical results show that pulse shaping is most effective at low pulse energies and broad spectral bandwidths, while intense transform-limited pulses with narrow spectral bandwidths maximize dissociation. We show that the control achieved with a quadratic chirped pulse optimized for vibrational ladder climbing, a cascade excitation process of adjacent vibrational levels, is hindered by rotational motion leading to significantly reduced dissociation. Moreover, pulse shaping using higher-order polynomial phase functions is found to provide only a marginal increase in dissociation yields. Our results provide additional insights into the coherent control of bond breaking in diatomic molecules, and demonstrate the efficacy of pulse shaping for a range of pulse energies.

2.
Phys Rev Lett ; 130(4): 043604, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763416

RESUMO

We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton, formed by strongly coupling two rotational states of a molecule with a single-mode cavity. Compared to the bare molecules driven by a single terahertz pulse, the presence of a cavity strongly modifies the postpulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation. To solve this challenging problem toward achieving complete quantum coherent control, we derive an analytical solution of a pulse-driven quantum Jaynes-Cummings model by expanding the wave function into entangled states and constructing an effective Hamiltonian. We utilize it to design a composite terahertz pulse and obtain the maximum degree of orientation of the polariton by exploiting photon blockade effects. This Letter offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton. It, therefore, has direct applications in polariton chemistry and molecular polaritonics for exploring novel quantum optical phenomena.

3.
Phys Chem Chem Phys ; 25(48): 32763-32777, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37724061

RESUMO

Generating field-free (non-stationary) orientation of molecules in space has been a longstanding goal in the field of quantum control of molecular rotation, which has significant applications in physical chemistry, chemical physics, strong-field physics, and quantum information science. In this Perspective, we review and examine several representative control schemes developed in recent years and implemented in theoretical and experimental areas for generating field-free orientation of molecules. By conducting numerical simulations of different control schemes on the same molecular system, we demonstrate that quantum coherent control, specifically targeting a limited number of the lowest-lying rotational levels to achieve an optimal superposition, can result in a high degree of orientation. To this end, we provide an overview of our latest developed analytical method, which enables the precise design of terahertz field parameters through resonant excitation. This design approach facilitates the attainment of desired field-free orientations by optimizing the amplitudes and phases of rotational wave functions for the selected rotational levels. Finally, we outlook the significance of such progress in multiple frontier research fields, highlighting its potential applications in ultracold physics, quantum computation, quantum simulation, and quantum metrology.

4.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546808

RESUMO

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

5.
Phys Chem Chem Phys ; 23(48): 27207-27226, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34850799

RESUMO

A full-dimensional wavepacket propagation describing the bimolecular exchange reactions H + H'OD → H'OH + D or HOD + H' initiated by photolysis of HCl in the hydrogen-bound complex (HCl)⋯(HOD) is reported. The dynamics of this reaction is carried out with the MCTDH method on an ab initio potential energy surface (PES) of H3O and the initial state is derived from the ground state wavefunction of the complex obtained by relaxation on its own electronic ground state ab initio PES. The description of the system makes use of polyspherical coordinates parametrizing a set of Radau and Jacobi vectors. The calculated energy- and time-resolved reaction probabilities show, owing to the large collision energies at play stemming from the (almost full) photolysis of HCl, that the repulsion between oxygen in the H'OD molecule and the incoming hydrogen atom is the main feature of the collision and leads to non-reactive scattering. No abstraction reaction products are observed. However, both exchange processes are still observable, with a preference in O-H' bond dissociation over that of O-D. The selectivity is reversed upon vibrational pre-excitation of the O-D stretching mode in the H'OD molecule. It is shown that, after the collision, the hydrogen atom of HCl does most likely not encounter the almost stationary chlorine atom again but we also consider the limit case where the H atom is forced to collide multiple times against H'OD as a result of being pushed back by the Cl atom.

6.
Phys Rev Lett ; 122(7): 073003, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848654

RESUMO

Simulations of nonresonant ultrafast x-ray scattering from a molecular wave packet in H_{2} are used to examine and classify the components that contribute to the total scattering signal. The elastic component, which can be used to determine the structural dynamics of the molecule, is also found to carry a strong signature of an adiabatic electron transfer that occurs in the simulated molecule. The inelastic component, frequently assumed to be constant, is found to change with the geometry of the molecule. Finally, a coherent mixed component due to interferences between different inelastic transitions is identified and shown to provide a direct probe of transient electronic coherences.

7.
Phys Rev Lett ; 122(6): 063001, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822093

RESUMO

We report x-ray free electron laser experiments addressing ground-state structural dynamics of the diplatinum anion Pt_{2}POP_{4} following photoexcitation. The structural dynamics are tracked with <100 fs time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.28 ps and decay time 2.2 ps, and structural analysis of the difference signal directly shows this as arising from ground-state dynamics along the PtPt coordinate. These results are compared with multiscale Born-Oppenheimer molecular dynamics simulations and demonstrate how off-resonance excitation can be used to prepare a vibrationally cold excited-state population complemented by a structure-dependent depletion of the ground-state population which subsequently evolves in time, allowing direct tracking of ground-state structural dynamics.

8.
Phys Chem Chem Phys ; 21(7): 4082-4095, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30719515

RESUMO

In this work, we investigate the excited-state solute and solvation structure of [Ru(bpy)3]2+, [Fe(bpy)3]2+, [Fe(bmip)2]2+ and [Cu(phen)2]+ (bpy = 2,2'-bipyridine; bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine; phen = 1,10-phenanthroline) transition metal complexes (TMCs) in terms of solute-solvent radial distribution functions (RDFs) and evaluate the performance of some of the most popular partial atomic charge (PAC) methods for obtaining these RDFs by molecular dynamics (MD) simulations. To this end, we compare classical MD of a frozen solute in water and acetonitrile (ACN) with quantum mechanics/molecular mechanics Born-Oppenheimer molecular dynamics (QM/MM BOMD) simulations. The calculated RDFs show that the choice of a suitable PAC method is dependent on the coordination number of the metal, denticity of the ligands, and type of solvent. It is found that this selection is less sensitive for water than ACN. Furthermore, a careful choice of the PAC method should be considered for TMCs that exhibit a free direct coordination site, such as [Cu(phen)2]+. The results of this work show that fast classical MD simulations with ChelpG/RESP or CM5 PACs can produce RDFs close to those obtained by QM/MM MD and thus, provide reliable solvation structures of TMCs to be used, e.g. in the analysis of scattering data.

9.
J Chem Phys ; 150(2): 024301, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646704

RESUMO

Recent advances in ultrafast laser technology hint at the possibility of using shaped pulses to generate deracemization via selective enantiomeric conversion; however, experimental implementation remains a challenge and has not yet been achieved. Here, we describe an experiment that can be considered an accessible intermediate step on the road towards achieving laser induced deracemization in a laboratory. Our approach consists of driving a racemic mixture of 3D oriented 3,5-difluoro-3', 5'-dibromobiphenyl (F2H3C6-C6H3Br2) molecules with a simple train of Gaussian pulses with alternating polarization axes. We use arguments related to the geometry of the field/molecule interaction to illustrate why this will increase the amplitude of the torsional oscillations between the phenyl rings while simultaneously breaking the inversion symmetry of the dynamics between the left- and right-handed enantiomeric forms, two crucial requirements for achieving deracemization. We verify our approach using numerical simulations and show that it leads to significant and experimentally measurable differences in the internal enantiomeric structures when detected by Coulomb explosion imaging.

10.
J Synchrotron Radiat ; 25(Pt 2): 306-315, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488907

RESUMO

Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute, i.e. the change in Pt-Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.

11.
Phys Rev Lett ; 120(16): 163202, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756917

RESUMO

A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I_{2} molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

12.
J Chem Phys ; 148(23): 234307, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29935499

RESUMO

This paper reports a time-dependent quantum mechanical wave packet study for bond-selective excitation and dissociation of HOD into the H + OD and D + OH channels in the first absorption band. Prior to excitation, the HOD molecule is randomly oriented with respect to a linearly polarized laser field and accurate static dipole moment and polarizability surfaces are included in the interaction potential. Vibrational excitation is obtained with intense, non-resonant 800 nm few-cycle excitation using dynamic Stark effect/impulsive Raman scattering. Dissociation is accomplished by another ultrashort vacuum ultraviolet-laser excitation. A laser control scheme is designed with a train of simple, non-resonant laser pulses in order to enhance the selectivity between the fragmentation channels. The effect of the carrier-envelope-phase of the ultrashort laser pulses is also investigated.

14.
Phys Chem Chem Phys ; 19(30): 19740-19749, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28627533

RESUMO

Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom are computed for different points in time. In doing so, distinct features of time-resolved X-ray scattering by non-stationary electronic wave packets are illustrated and accentuated in greater detail than it has been done before.

15.
Phys Chem Chem Phys ; 18(6): 4772-9, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26799495

RESUMO

The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of the Br2(B,vf) fragment produced upon predissociation of the Ne-Br2(B) complex, which is excited to a superposition of overlapping resonance states using different fixed bandwidth pulses where the linear chirps are varied. The postpulse transient phase modulation effects observed on fragment populations for a long time window are explained in terms of the mechanism of interference between overlapping resonances. A detailed description of how the interference mechanism affects the magnitude and the time window of the phase control effects is also provided. In the light of the results, the conditions to maximize phase modulation control on fragment distributions are discussed.

16.
J Chem Phys ; 144(24): 244307, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369515

RESUMO

The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.

17.
J Chem Phys ; 144(1): 014306, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26747805

RESUMO

We demonstrate theoretically that laser-induced coherent quantum interference control of asymptotic states of dissociating molecules is possible, starting from a single vibrational eigenstate, after the interaction with two laser pulses-at a fixed time delay-both operating in the weak-field limit. Thus, phase dependence in the interaction with the second fixed-energy phase-modulated pulse persists after the pulse is over. This is illustrated for the nonadiabatic process: I + Br(*)←IBr → I + Br, where the relative yield of excited Br(*) can be changed by pure phase modulation. Furthermore, a strong frequency dependence of the branching ratio is observed and related to the re-crossing dynamics of the avoided crossing in the above-mentioned process.

18.
J Chem Phys ; 142(22): 221101, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071693

RESUMO

Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.

19.
J Chem Phys ; 141(20): 204301, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429936

RESUMO

We consider a phaselocked two-pulse sequence applied to photofragmentation in the weak-field limit. The two pulses are not overlapping in time, i.e., the energy of the pulse-train is constant for all time delays. It is shown that the relative yield of excited Br (*) in the nonadiabatic process: I + Br* ← IBr → I + Br, changes as a function of time delay when the two excited wave packets interfere. The underlying mechanisms are analyzed and the change in the branching ratio as a function of time delay is only a reflection of a changing frequency distribution of the pulse train; the branching ratio does not depend on the detailed pulse shape.

20.
J Chem Phys ; 136(4): 044303, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22299867

RESUMO

We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa