Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35191477

RESUMO

Recruitment of STIM proteins to cortical endoplasmic reticulum (cER) domains forming membrane contact sites (MCSs) mediate the store-operated Ca2+ entry (SOCE) pathway essential for human immunity. The cER is dynamically regulated by STIM and tethering proteins during SOCE, but the ultrastructural rearrangement and functional consequences of cER remodeling are unknown. Here, we express natural (E-Syt1 and E-Syt2) and artificial (MAPPER-S and MAPPER-L) protein tethers in HEK-293T cells and correlate the changes in cER length and gap distance, as measured by electron microscopy, with ionic fluxes. We found that native cER cisternae extended during store depletion and remained elongated at a constant ER-plasma membrane (PM) gap distance during subsequent Ca2+ elevations. Tethering proteins enhanced store-dependent cER expansion, anchoring the enlarged cER at tether-specific gap distances of 12-15 nm (E-Syts) and 5-9 nm (MAPPERs). Cells with artificially extended cER had reduced SOCE and reduced agonist-induced Ca2+ release. SOCE remained modulated by calmodulin and exhibited enhanced Ca2+-dependent inhibition. We propose that cER expansion mediated by ER-PM tethering at a close distance negatively regulates SOCE by confining STIM-ORAI complexes to the periphery of enlarged cER sheets, a process that might participate in the termination of store-operated Ca2+ entry.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
2.
J Pharmacol Exp Ther ; 388(1): 171-180, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875310

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Camundongos , Animais , Ratos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Coenzima A/metabolismo , Modelos Animais de Doenças , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Encéfalo/metabolismo
3.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589572

RESUMO

MOTIVATION: The importance and rate of development of genome-scale metabolic models have been growing for the last few years, increasing the demand for software solutions that automate several steps of this process. However, since TRIAGE's release, software development for the automatic integration of transport reactions into models has stalled. RESULTS: Here, we present the Transport Systems Tracker (TranSyT). Unlike other transport systems annotation software, TranSyT does not rely on manual curation to expand its internal database, which is derived from highly curated records retrieved from the Transporters Classification Database and complemented with information from other data sources. TranSyT compiles information regarding transporter families and proteins, and derives reactions into its internal database, making it available for rapid annotation of complete genomes. All transport reactions have GPR associations and can be exported with identifiers from four different metabolite databases. TranSyT is currently available as a plugin for merlin v4.0 and an app for KBase. AVAILABILITY AND IMPLEMENTATION: TranSyT web service: https://transyt.bio.di.uminho.pt/; GitHub for the tool: https://github.com/BioSystemsUM/transyt; GitHub with examples and instructions to run TranSyT: https://github.com/ecunha1996/transyt_paper.


Assuntos
Software , Bases de Dados Factuais
4.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857575

RESUMO

Microbial genome annotation is the process of identifying structural and functional elements in DNA sequences and subsequently attaching biological information to those elements. DRAM is a tool developed to annotate bacterial, archaeal, and viral genomes derived from pure cultures or metagenomes. DRAM goes beyond traditional annotation tools by distilling multiple gene annotations to genome level summaries of functional potential. Despite these benefits, a downside of DRAM is the requirement of large computational resources, which limits its accessibility. Further, it did not integrate with downstream metabolic modeling tools that require genome annotation. To alleviate these constraints, DRAM and the viral counterpart, DRAM-v, are now available and integrated with the freely accessible KBase cyberinfrastructure. With kb_DRAM users can generate DRAM annotations and functional summaries from microbial or viral genomes in a point-and-click interface, as well as generate genome-scale metabolic models from DRAM annotations. AVAILABILITY AND IMPLEMENTATION: For kb_DRAM users, the kb_DRAM apps on KBase can be found in the catalog at https://narrative.kbase.us/#catalog/modules/kb_DRAM. For kb_DRAM users, a tutorial workflow with all documentation is available at https://narrative.kbase.us/narrative/129480. For kb_DRAM developers, software is available at https://github.com/shafferm/kb_DRAM.


Assuntos
Bactérias , Software , Anotação de Sequência Molecular , Bactérias/genética , Archaea/genética , Metabolômica
5.
Retina ; 44(7): 1165-1170, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900578

RESUMO

BACKGROUND/PURPOSE: To determine and compare the efficacy of a surgical internal limiting membrane (ILM) flap technique with the traditional ILM peel on long-term visual and anatomical outcomes for large (>400 µm) full-thickness macular holes. METHODS: From October 2016 to July 2022, patients undergoing initial full-thickness macular hole repair with the ILM flap or ILM peel technique were reviewed. Final outcomes were recorded and based on size in microns: 401 to 800, 801 to 1,200, and >1,200. RESULTS: Patients treated with ILM flap (n = 52, 94.2% closure rate) or ILM peel (n = 407, 93.6% closure rate) were followed with a mean follow-up time of 15.0 ± 10.2 and 20.0 ± 13.4 months, respectively. Success rates for ILM flaps and ILM peels were compared for full-thickness macular holes of 401 to 800 (100%, 95.8%, P = 0.39), 801 to 1,200 (95%, 93%, P = 0.74), and >1,200 (86.7%, 86.7%, P = 1.0) µm. Mean best-recorded logarithm of the minimal angle of resolution visual acuity for ILM flaps and ILM peels, respectively, was 1.02 ± 0.46 and 0.87 ± 0.47 preoperatively, with follow-up acuity of 0.48 ± 0.32 (P < 0.03) and 0.39 ± 0.42 (P < 0.01) at Year 3. CONCLUSION: Both techniques provide a similar anatomical closure rate and functional improvement in vision. Comparisons should be cautiously made based on difference in preoperative hole size.


Assuntos
Membrana Basal , Perfurações Retinianas , Retalhos Cirúrgicos , Tomografia de Coerência Óptica , Acuidade Visual , Vitrectomia , Humanos , Perfurações Retinianas/cirurgia , Perfurações Retinianas/fisiopatologia , Feminino , Membrana Basal/cirurgia , Masculino , Acuidade Visual/fisiologia , Vitrectomia/métodos , Estudos Retrospectivos , Idoso , Seguimentos , Pessoa de Meia-Idade , Resultado do Tratamento , Tamponamento Interno/métodos , Fatores de Tempo , Membrana Epirretiniana/cirurgia
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753504

RESUMO

Metabolic engineering uses enzymes as parts to build biosystems for specified tasks. Although a part's working life and failure modes are key engineering performance indicators, this is not yet so in metabolic engineering because it is not known how long enzymes remain functional in vivo or whether cumulative deterioration (wear-out), sudden random failure, or other causes drive replacement. Consequently, enzymes cannot be engineered to extend life and cut the high energy costs of replacement. Guided by catalyst engineering, we adopted catalytic cycles until replacement (CCR) as a metric for enzyme functional life span in vivo. CCR is the number of catalytic cycles that an enzyme mediates in vivo before failure or replacement, i.e., metabolic flux rate/protein turnover rate. We used estimated fluxes and measured protein turnover rates to calculate CCRs for ∼100-200 enzymes each from Lactococcus lactis, yeast, and Arabidopsis CCRs in these organisms had similar ranges (<103 to >107) but different median values (3-4 × 104 in L. lactis and yeast versus 4 × 105 in Arabidopsis). In all organisms, enzymes whose substrates, products, or mechanisms can attack reactive amino acid residues had significantly lower median CCR values than other enzymes. Taken with literature on mechanism-based inactivation, the latter finding supports the proposal that 1) random active-site damage by reaction chemistry is an important cause of enzyme failure, and 2) reactive noncatalytic residues in the active-site region are likely contributors to damage susceptibility. Enzyme engineering to raise CCRs and lower replacement costs may thus be both beneficial and feasible.


Assuntos
Arabidopsis/enzimologia , Biocatálise , Enzimas/química , Lactococcus lactis/enzimologia , Engenharia Metabólica , Saccharomyces cerevisiae/enzimologia
7.
Bioinformatics ; 38(3): 778-784, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34726691

RESUMO

MOTIVATION: Nutrient and contaminant behavior in the subsurface are governed by multiple coupled hydrobiogeochemical processes which occur across different temporal and spatial scales. Accurate description of macroscopic system behavior requires accounting for the effects of microscopic and especially microbial processes. Microbial processes mediate precipitation and dissolution and change aqueous geochemistry, all of which impacts macroscopic system behavior. As 'omics data describing microbial processes is increasingly affordable and available, novel methods for using this data quickly and effectively for improved ecosystem models are needed. RESULTS: We propose a workflow ('Omics to Reactive Transport-ORT) for utilizing metagenomic and environmental data to describe the effect of microbiological processes in macroscopic reactive transport models. This workflow utilizes and couples two open-source software packages: KBase (a software platform for systems biology) and PFLOTRAN (a reactive transport modeling code). We describe the architecture of ORT and demonstrate an implementation using metagenomic and geochemical data from a river system. Our demonstration uses microbiological drivers of nitrification and denitrification to predict nitrogen cycling patterns which agree with those provided with generalized stoichiometries. While our example uses data from a single measurement, our workflow can be applied to spatiotemporal metagenomic datasets to allow for iterative coupling between KBase and PFLOTRAN. AVAILABILITY AND IMPLEMENTATION: Interactive models available at https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-model/. Microbiological data available at NCBI via BioProject ID PRJNA576070. ORT Python code available at https://github.com/subsurfaceinsights/ort-kbase-to-pflotran. KBase narrative available at https://narrative.kbase.us/narrative/71260 or static narrative (no login required) at https://kbase.us/n/71260/258. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Software , Fluxo de Trabalho , Metagenômica , Biologia de Sistemas
8.
Nucleic Acids Res ; 49(D1): D575-D588, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32986834

RESUMO

For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical 'Rosetta Stone' to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


Assuntos
Bactérias/metabolismo , Bases de Dados Factuais , Fungos/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Plantas/metabolismo , Bactérias/genética , Genoma Bacteriano , Termodinâmica
9.
Metab Eng ; 69: 302-312, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958914

RESUMO

Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.


Assuntos
Redes e Vias Metabólicas , Proteínas de Ciclo Celular , Bases de Dados Factuais , Escherichia coli , Redes e Vias Metabólicas/genética , Metaboloma , Biologia Sintética
10.
Eur J Pediatr ; 181(6): 2201-2213, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35292852

RESUMO

The baseline risk for multiple febrile seizures within the same febrile illness is largely unknown. Estimates range from 5 to 30%. Imprecise estimates can lead to incorrectly powering studies investigating the management of febrile seizures. To estimate the risk of multiple febrile seizures in the same febrile illness, we systematically reviewed and conducted a meta-analysis of studies from January 2000 to December 2021 that contained data for the number of children for both simple and complex febrile seizures in the same febrile illness. We searched MEDLINE, EMBASE, and Web of Science for randomized, quasi-randomized, prospective, and retrospective trials that involved children with febrile seizures. A total of 23,131 febrile illnesses with febrile seizures met the inclusion criteria. The estimated baseline risk of multiple febrile seizures in the same febrile illness was 17% (95% CI, 16-19%). However, the 30 cohorts that included both admitted and non-admitted patients had a lower percentage of multiple FSs within the same illness (14%; 95% CI, 12-15%) than the 30 cohorts that enrolled only admitted patients (20%; 95% CI, 16-25%). CONCLUSION: Researchers can use estimates in this paper to design future studies. Taking into the account the substantial heterogeneity between countries and studies, clinicians could cautiously use our estimates in their clinical assessment and be better able to set parental expectations about a child's chances of having another febrile seizure during the current illness. TRIAL REGISTRATION: PROSPERO CRD42020191784. Registered July 18, 2020. WHAT IS KNOWN: • There is renewed interest in the diagnostic workup and prophylactic treatment of febrile seizures to prevent repeat seizures in the same febrile illness. • There is a lack of accurate estimates of the baseline risk for multiple febrile seizures in the same illness to properly design studies investigating management. WHAT IS NEW: • This study provides the most robust estimates for the baseline risk for multiple febrile seizures in the same illness.


Assuntos
Convulsões Febris , Criança , Hospitalização , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Convulsões Febris/diagnóstico , Convulsões Febris/epidemiologia , Convulsões Febris/etiologia
11.
J Neurosci ; 40(12): 2445-2457, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32041896

RESUMO

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys (Macaca fascicularis) to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast. The visual stimuli were presented in a stimulus window that was also varied in size. Using the responses to parametric variation in these stimulus variables, we extracted a number of tuning response measures and used them in the cluster analysis. Six main clusters emerged along with some smaller clusters. Additionally, we asked whether parameter distributions from each of the clusters were statistically different. There were clear separations of parameters between some of the clusters, particularly for f1/f0 ratio, direction selectivity, and temporal frequency bandwidth, but other dimensions also showed differences between clusters. Our data suggest that in layer 6 there are multiple parallel circuits that provide information about different aspects of the visual stimulus.SIGNIFICANCE STATEMENT The cortex is multilayered and is involved in many high-level computations. In the current study, we have asked whether there are subpopulations of neurons, clusters, in layer 6 of cortex with different functional tuning properties that provide information about different aspects of the visual image. We identified six major functional clusters within layer 6. These findings show that there is much more complexity to the circuits in cortex than previously demonstrated and open up a new avenue for experimental investigation within layers of other cortical areas and for the elaboration of models of circuit function that incorporate many parallel pathways with different functional roles.


Assuntos
Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Análise por Conglomerados , Sensibilidades de Contraste , Eletrocardiografia , Potenciais Evocados Visuais , Macaca fascicularis , Masculino , Percepção de Movimento/fisiologia , Orientação , Estimulação Luminosa , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia
12.
Biochemistry ; 60(47): 3555-3565, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34729986

RESUMO

Enzymes have in vivo life spans. Analysis of life spans, i.e., lifetime totals of catalytic turnovers, suggests that nonsurvivable collateral chemical damage from the very reactions that enzymes catalyze is a common but underdiagnosed cause of enzyme death. Analysis also implies that many enzymes are moderately deficient in that their active-site regions are not naturally as hardened against such collateral damage as they could be, leaving room for improvement by rational design or directed evolution. Enzyme life span might also be improved by engineering systems that repair otherwise fatal active-site damage, of which a handful are known and more are inferred to exist. Unfortunately, the data needed to design and execute such improvements are lacking: there are too few measurements of in vivo life span, and existing information about the extent, nature, and mechanisms of active-site damage and repair during normal enzyme operation is too scarce, anecdotal, and speculative to act on. Fortunately, advances in proteomics, metabolomics, cheminformatics, comparative genomics, and structural biochemistry now empower a systematic, data-driven approach for identifying, predicting, and validating instances of active-site damage and its repair. These capabilities would be practically useful in enzyme redesign and improvement of in-use stability and could change our thinking about which enzymes die young in vivo, and why.


Assuntos
Biocatálise , Estabilidade Enzimática , Domínio Catalítico , Biologia de Sistemas
13.
Nature ; 517(7534): 369-72, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25363780

RESUMO

For many decades comparative analyses of protein sequences and structures have been used to investigate fundamental principles of molecular evolution. In contrast, relatively little is known about the long-term evolution of species' phenotypic and genetic properties. This represents an important gap in our understanding of evolution, as exactly these proprieties play key roles in natural selection and adaptation to diverse environments. Here we perform a comparative analysis of bacterial growth and gene deletion phenotypes using hundreds of genome-scale metabolic models. Overall, bacterial phenotypic evolution can be described by a two-stage process with a rapid initial phenotypic diversification followed by a slow long-term exponential divergence. The observed average divergence trend, with approximately similar fractions of phenotypic properties changing per unit time, continues for billions of years. We experimentally confirm the predicted divergence trend using the phenotypic profiles of 40 diverse bacterial species across more than 60 growth conditions. Our analysis suggests that, at long evolutionary distances, gene essentiality is significantly more conserved than the ability to utilize different nutrients, while synthetic lethality is significantly less conserved. We also find that although a rapid phenotypic evolution is sometimes observed within the same species, a transition from high to low phenotypic similarity occurs primarily at the genus level.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Evolução Biológica , Fenótipo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Deleção de Genes , Genoma Bacteriano/genética , Seleção Genética
14.
Indoor Air ; 31(1): 170-187, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32731301

RESUMO

School-age children are particularly susceptible to exposure to air pollutants. To quantify factors affecting children's exposure at school, indoor and outdoor microenvironmental air pollutant concentrations were measured at 32 selected primary and secondary schools in Hong Kong. Real-time PM10 , PM2.5 , NO2, and O3 concentrations were measured in 76 classrooms and 23 non-classrooms. Potential explanatory factors related to building characteristics, ventilation practice, and occupant activities were measured or recorded. Their relationship with indoor measured concentrations was examined using mixed linear regression models. Ten factors were significantly associated with indoor microenvironmental concentrations, together accounting for 74%, 61%, 46%, and 38% of variations observed for PM2.5 , PM10 , O3, and NO2 microenvironmental concentrations, respectively. Outdoor concentration is the single largest predictor for indoor concentrations. Infiltrated outdoor air pollution contributes to 90%, 70%, 75%, and 50% of PM2.5 , PM10 , O3, and NO2 microenvironmental concentrations, respectively, in classrooms during school hours. Interventions to reduce indoor microenvironmental concentrations can be prioritized in reducing ambient air pollution and infiltration of outdoor pollution. Infiltration factors derived from linear regression models provide useful information on outdoor infiltration and help address the gap in generalizable parameter values that can be used to predict school microenvironmental concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Instituições Acadêmicas , Criança , Monitoramento Ambiental , Gases , Humanos
15.
Ophthalmology ; 127(7): 948-955, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173113

RESUMO

PURPOSE: Injection of pharmacotherapy into the suprachoroidal space, between the sclera and choroid, is an alternative delivery technique developed with the rationale of providing higher drug concentrations to posterior ocular structures compared with other intraocular and periocular injection procedures. This study was conducted to evaluate the safety and efficacy of suprachoroidally injected triamcinolone acetonide formulation (CLS-TA), a suspension of triamcinolone acetonide, in improving vision among patients with noninfectious uveitis complicated by macular edema (ME). DESIGN: Phase 3 masked, randomized trial. PARTICIPANTS: One hundred sixty patients with ME secondary to noninfectious uveitis. Patients were required to have a best-corrected visual acuity (BCVA) of 5 or more Early Treatment Diabetic Retinopathy Study (ETDRS) letters (Snellen equivalent, 20/800) and 70 or fewer ETDRS letters read (Snellen equivalent, 20/40) in the study eye. METHODS: Patients were randomized 3:2 to suprachoroidally injected CLS-TA or sham treatment, with administrations at day 0 and week 12. MAIN OUTCOME MEASURES: The primary end point was improvement from baseline of 15 or more ETDRS letters in BCVA at week 24. The secondary end point was reduction from baseline in central subfield thickness (CST) at week 24. RESULTS: In the CLS-TA arm, 47% of patients gained 15 or more ETDRS letters in BCVA versus 16% in the control arm (P < 0.001), meeting the primary end point. Mean reductions in CST from baseline were 153 µm versus 18 µm (P < 0.001). No serious adverse events (AEs) related to treatment were reported. Corticosteroid-associated AEs of elevated intraocular pressure occurred in 11.5% and 15.6% of the CLS-TA and control groups, respectively. Cataract AE rates were comparable (7.3% and 6.3%, respectively). CONCLUSIONS: Patients in the CLS-TA study arm experienced clinically significant improvement in vision relative to the sham procedure, demonstrating the efficacy of suprachoroidal injection of CLS-TA for the treatment of ME in a vision-threatening disorder.


Assuntos
Edema Macular/tratamento farmacológico , Triancinolona Acetonida/administração & dosagem , Uveíte/complicações , Acuidade Visual , Corioide , Feminino , Glucocorticoides/administração & dosagem , Humanos , Injeções Intraoculares , Edema Macular/diagnóstico , Edema Macular/etiologia , Masculino , Pessoa de Meia-Idade , Tomografia de Coerência Óptica/métodos , Resultado do Tratamento , Uveíte/diagnóstico , Uveíte/tratamento farmacológico
16.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824325

RESUMO

There is an urgent need for novel, efficient and environmentally friendly strategies to control apple scab (Venturia inaequalis), for the purpose of reducing overall pesticide use. Fructans are recently emerging as promising "priming" compounds, standing out for their safety and low production costs. The objective of this work was to test a fructan-triggered defense in the leaves of apple seedlings. It was demonstrated that exogenous leaf spraying can reduce the development of apple scab disease symptoms. When evaluated macroscopically and by V. inaequalis-specific qPCR, levan-treated leaves showed a significant reduction of sporulation and V. inaequalis DNA in comparison to mock- and inulin-treated leaves, comparable to the levels in fosetyl-aluminum-treated leaves. Furthermore, we observed a significant reduction of in vitro mycelial growth of V. inaequalis on plates supplemented with levans when compared to controls, indicating a direct inhibition of fungal growth. Variations in endogenous sugar contents in the leaves were followed during priming and subsequent infection, revealing complex dynamics as a function of time and leaf ontogeny. Our data are discussed in view of the present theories on sugar signaling and fructan-based immunity, identifying areas for future research and highlighting the potential use of fructans in apple scab management in orchards.


Assuntos
Antifúngicos/farmacologia , Resistência à Doença , Frutanos/farmacologia , Fungos do Gênero Venturia/patogenicidade , Malus/microbiologia , Fungos do Gênero Venturia/efeitos dos fármacos , Fungos do Gênero Venturia/fisiologia , Malus/efeitos dos fármacos , Malus/imunologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
17.
Scott Med J ; 65(2): 40-45, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32208839

RESUMO

In 1842, when John Goodsir was Conservator to the Museum of the RCSEd, he saw a 19-year-old male patient who vomited a large volume of acidic, fermented-smelling, watery fluid every morning. Under his microscope, Goodsir found the vomitus to be populated with a micro-organism he named Sarcina ventriculi, which he considered to be causative. In so-doing, Goodsir became one of the first people to link a specific micro-organism with a disease. Goodsir recommended small doses of creosote as an antiseptic and claimed that the boy was eventually cured of the vomiting condition. In August of 1863 Charles Darwin was hugely celebrated by the scientific community and the public, but he had suffered from severe stomach problems all his adult life and at this point, he was vomiting daily. He read Goodsir's paper and contacted him and asked if he could send some vomitus samples to Edinburgh in the hope that Goodsir might find Sarcina in it and solve the mystery of his debilitating stomach symptoms and perhaps cure them with creosote. Goodsir examined samples in his microscope, but failed to find Sarcina. Sadly, Darwin went on to suffer constantly from severe stomach problems, recently attributed to lactose intolerance, until he died in 1882, some 20 years later.


Assuntos
Dispepsia/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Sarcina/isolamento & purificação , Gastropatias/microbiologia , Vômito/microbiologia , Causalidade , Infecções por Bactérias Gram-Positivas/história , História do Século XIX , Humanos , Masculino , Gastropatias/metabolismo , Adulto Jovem
18.
Plant J ; 95(6): 1102-1113, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924895

RESUMO

Genome-scale metabolic reconstructions help us to understand and engineer metabolism. Next-generation sequencing technologies are delivering genomes and transcriptomes for an ever-widening range of plants. While such omic data can, in principle, be used to compare metabolic reconstructions in different species, organs and environmental conditions, these comparisons require a standardized framework for the reconstruction of metabolic networks from transcript data. We previously introduced PlantSEED as a framework covering primary metabolism for 10 species. We have now expanded PlantSEED to include 39 species and provide tools that enable automated annotation and metabolic reconstruction from transcriptome data. The algorithm for automated annotation in PlantSEED propagates annotations using a set of signature k-mers (short amino acid sequences characteristic of particular proteins) that identify metabolic enzymes with an accuracy of about 97%. PlantSEED reconstructions are built from a curated template that includes consistent compartmentalization for more than 100 primary metabolic subsystems. Together, the annotation and reconstruction algorithms produce reconstructions without gaps and with more accurate compartmentalization than existing resources. These tools are available via the PlantSEED web interface at http://modelseed.org, which enables users to upload, annotate and reconstruct from private transcript data and simulate metabolic activity under various conditions using flux balance analysis. We demonstrate the ability to compare these metabolic reconstructions with a case study involving growth on several nitrogen sources in roots of four species.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Metabolômica/métodos , Plantas/metabolismo , Algoritmos , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Plantas/genética , Transcriptoma
20.
Biochem J ; 475(4): 813-825, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382740

RESUMO

The pantothenate (vitamin B5) synthesis pathway in plants is not fully defined because the subcellular site of its ketopantoate → pantoate reduction step is unclear. However, the pathway is known to be split between cytosol, mitochondria, and potentially plastids, and inferred to involve mitochondrial or plastidial transport of ketopantoate or pantoate. No proteins that mediate these transport steps have been identified. Comparative genomic and transcriptomic analyses identified Arabidopsis thaliana BASS1 (At1g78560) and its maize (Zea mays) ortholog as candidates for such a transport role. BASS1 proteins belong to the bile acid : sodium symporter family and share similarity with the Salmonella enterica PanS pantoate/ketopantoate transporter and with predicted bacterial transporters whose genes cluster on the chromosome with pantothenate synthesis genes. Furthermore, Arabidopsis BASS1 is co-expressed with genes related to metabolism of coenzyme A, the cofactor derived from pantothenate. Expression of Arabidopsis or maize BASS1 promoted the growth of a S. enterica panB panS mutant strain when pantoate, but not ketopantoate, was supplied, and increased the rate of [3H]pantoate uptake. Subcellular localization of green fluorescent protein fusions in Nicotiana tabacum BY-2 cells demonstrated that Arabidopsis BASS1 is targeted solely to the plastid inner envelope. Two independent Arabidopsis BASS1 knockout mutants accumulated pantoate ∼10-fold in leaves and had smaller seeds. Taken together, these data indicate that BASS1 is a physiologically significant plastidial pantoate transporter and that the pantoate reduction step in pantothenate biosynthesis could be at least partly localized in plastids.


Assuntos
Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/genética , Ácido Pantotênico/genética , Proteínas de Plantas/genética , Plastídeos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Citosol/enzimologia , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , Mitocôndrias/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Ácido Pantotênico/biossíntese , Salmonella enterica/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa