Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(5): 1321-1335.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445039

RESUMO

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.


Assuntos
Retículo Endoplasmático/metabolismo , Preferências Alimentares , Melanocortinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Norepinefrina/farmacologia , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Análise de Componente Principal , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Proteína 1 de Ligação a X-Box/genética
2.
Nature ; 575(7782): 361-365, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695197

RESUMO

Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Metabolismo dos Lipídeos , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Humanos , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metaloendopeptidases/genética , Proteínas Mitocondriais/genética , Proteólise
3.
Science ; 384(6694): 438-446, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662831

RESUMO

Liver mitochondria play a central role in metabolic adaptations to changing nutritional states, yet their dynamic regulation upon anticipated changes in nutrient availability has remained unaddressed. Here, we found that sensory food perception rapidly induced mitochondrial fragmentation in the liver through protein kinase B/AKT (AKT)-dependent phosphorylation of serine 131 of the mitochondrial fission factor (MFFS131). This response was mediated by activation of hypothalamic pro-opiomelanocortin (POMC)-expressing neurons. A nonphosphorylatable MFFS131G knock-in mutation abrogated AKT-induced mitochondrial fragmentation in vitro. In vivo, MFFS131G knock-in mice displayed altered liver mitochondrial dynamics and impaired insulin-stimulated suppression of hepatic glucose production. Thus, rapid activation of a hypothalamus-liver axis can adapt mitochondrial function to anticipated changes of nutritional state in control of hepatic glucose metabolism.


Assuntos
Alimentos , Gluconeogênese , Glucose , Fígado , Proteínas de Membrana , Mitocôndrias Hepáticas , Dinâmica Mitocondrial , Proteínas Mitocondriais , Percepção , Animais , Masculino , Camundongos , Técnicas de Introdução de Genes , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Fosforilação , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos
4.
Cell Metab ; 35(5): 786-806.e13, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075752

RESUMO

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.


Assuntos
Hipotálamo , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo , Fígado/metabolismo , Nutrientes
5.
Cancers (Basel) ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824276

RESUMO

Targeted inhibition of Bruton's Tyrosine Kinase (BTK) with ibrutinib and other agents has become important treatment options in chronic lymphocytic leukemia, Waldenström's Macroglobulinemia, Mantle cell lymphoma, and non-GCB DLBCL. Clinical trials combining small molecule inhibitors with monoclonal antibodies have been initiated at rapid pace, with the biological understanding between their synergistic interactions lagging behind. Here, we have evaluated the synergy between BTK inhibitors and monoclonal antibody therapy via macrophage mediated antibody dependent cellular phagocytosis (ADCP). Initially, we observed increased ADCP with ibrutinib, whilst second generation BTK inhibitors failed to synergistically interact with monoclonal antibody treatment. Kinase activity profiling under BTK inhibition identified significant loss of Janus Kinase 2 (JAK2) only under ibrutinib treatment. We validated this potential off-target effect via JAK inhibition in vitro as well as with CRISPR/Cas9 JAK2-/- experiments in vivo, showing increased ADCP and prolonged survival, respectively. This data supports inhibition of the JAK-STAT (Signal Transducers and Activators of Transcription) signaling pathway in B-cell malignancies in combination with monoclonal antibody therapy to increase macrophage-mediated immune responses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa