Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Vet Sci ; 9: 1029075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590816

RESUMO

Antigen banks have been established to supply foot-and-mouth disease virus (FMDV) vaccines at short notice to respond to incursions or upsurges in cases of FMDV infection. Multiple vaccine strains are needed to protect against specific FMDV lineages that circulate within six viral serotypes that are unevenly distributed across the world. The optimal selection of distinct antigens held in a bank must carefully balance the desire to cover these risks with the costs of purchasing and maintaining vaccine antigens. PRAGMATIST is a semi-quantitative FMD vaccine strain selection tool combining three strands of evidence: (1) estimates of the risk of incursion from specific areas (source area score); (2) estimates of the relative prevalence of FMD viral lineages in each specific area (lineage distribution score); and (3) effectiveness of each vaccine against specific FMDV lineages based on laboratory vaccine matching tests (vaccine coverage score). The output is a vaccine score, which identifies vaccine strains that best address the threats, and consequently which are the highest priority for inclusion in vaccine antigen banks. In this paper, data used to populate PRAGMATIST are described, including the results from expert elicitations regarding FMD risk and viral lineage circulation, while vaccine coverage data is provided from vaccine matching tests performed at the WRLFMD between 2011 and 2021 (n = 2,150). These data were tailored to working examples for three hypothetical vaccine antigen bank perspectives (Europe, North America, and Australia). The results highlight the variation in the vaccine antigens required for storage in these different regions, dependent on risk. While the tool outputs are largely robust to uncertainty in the input parameters, variation in vaccine coverage score had the most noticeable impact on the estimated risk covered by each vaccine, particularly for vaccines that provide substantial risk coverage across several lineages.

2.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244509

RESUMO

Peste des petits ruminants (PPR) disease was first confirmed in Tanzania in 2008 in sheep and goats in Ngorongoro District, northern Tanzania, and is now endemic in this area. This study aimed to characterise PPR disease in pastoralist small ruminant flocks in Ngorongoro District. During June 2015, 33 PPR-like disease reports were investigated in different parts of the district, using semi-structured interviews, clinical examinations, PPR virus rapid detection test (PPRV-RDT), and laboratory analysis. Ten flocks were confirmed as PPRV infected by PPRV-RDT and/or real-time reverse transcription-polymerase chain reaction (RT-qPCR), and two flocks were co-infected with bluetongue virus (BTV), confirmed by RT-qPCR. Phylogenetic analysis of six partial N gene sequences showed that the PPR viruses clustered with recent lineage III Tanzanian viruses, and grouped with Ugandan, Kenyan and Democratic Republic of Congo isolates. No PPR-like disease was reported in wildlife. There was considerable variation in clinical syndromes between flocks: some showed a full range of PPR signs, while others were predominantly respiratory, diarrhoea, or oro-nasal syndromes, which were associated with different local disease names (olodua-a term for rinderpest, olkipiei-lung disease, oloirobi-fever, enkorotik-diarrhoea). BTV co-infection was associated with severe oro-nasal lesions. This clinical variability makes the field diagnosis of PPR challenging, highlighting the importance of access to pen-side antigen tests and multiplex assays to support improved surveillance and targeting of control activities for PPR eradication.


Assuntos
Bluetongue/epidemiologia , Coinfecção/epidemiologia , Surtos de Doenças/veterinária , Peste dos Pequenos Ruminantes/epidemiologia , Animais , Animais Domésticos , Anticorpos Antivirais/sangue , Bluetongue/diagnóstico , Bluetongue/patologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Vírus Bluetongue/isolamento & purificação , Coinfecção/diagnóstico , Coinfecção/patologia , Coinfecção/virologia , Diagnóstico Diferencial , Cabras , Peste dos Pequenos Ruminantes/diagnóstico , Peste dos Pequenos Ruminantes/patologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Filogenia , RNA Viral/genética , Ovinos , Tanzânia/epidemiologia
3.
Microorganisms ; 8(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545731

RESUMO

In 2011, Bluetongue virus serotype 14 (BTV-14) was detected in Russia during routine surveillance, and was subsequently found in a number of European countries. The strain had high sequence similarity to a BTV-14 vaccine strain. We aimed to determine the risk of this BTV-14 strain causing disease in a UK sheep breed. Four Poll Dorset sheep were infected with a Polish isolate of BTV-14 and infection kinetics were monitored over 28 days. BTV RNA was detected in EDTA blood by 4 days post-infection (dpi) and remained detectable at 28 days post-infection (dpi). Peak viraemia occurred at 6 and 7 dpi with Ct values ranging between 24.6 and 27.3 in all infected animals. BTV antibodies were detected by 10 dpi using a commercial ELISA and neutralising antibodies were detected from 10 dpi. BTV was isolated between 6 and 12 dpi. All infected sheep developed mild clinical signs such as reddening of conjunctiva and mucosal membranes, with one sheep demonstrating more overt clinical signs. Two uninoculated control animals remained clinically healthy and did not have detectable BTV RNA or antibodies. The overall mild clinical symptoms caused by this BTV-14 in this highly susceptible sheep breed were in accordance with the asymptomatic infections observed in the affected countries.

4.
Sci Rep ; 6: 20627, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853457

RESUMO

Bluetongue virus (BTV) is an economically important arbovirus of ruminants that is transmitted by Culicoides spp. biting midges. BTV infection of ruminants results in a high viraemia, suggesting that repeated sharing of needles between animals could result in its iatrogenic transmission. Studies defining the risk of iatrogenic transmission of blood-borne pathogens by less invasive routes, such as subcutaneous or intradermal inoculations are rare, even though the sharing of needles is common practice for these inoculation routes in the veterinary sector. Here we demonstrate that BTV can be transmitted by needle sharing during subcutaneous inoculation, despite the absence of visible blood contamination of the needles. The incubation period, measured from sharing of needles, to detection of BTV in the recipient sheep or cattle, was substantially longer than has previously been reported after experimental infection of ruminants by either direct inoculation of virus, or through blood feeding by infected Culicoides. Although such mechanical transmission is most likely rare under field condition, these results are likely to influence future advice given in relation to sharing needles during veterinary vaccination campaigns and will also be of interest for the public health sector considering the risk of pathogen transmission during subcutaneous inoculations with re-used needles.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/transmissão , Agulhas , Animais , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Bovinos , Imunoensaio , Infusões Subcutâneas , Injeções Intradérmicas , RNA Viral/análise , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real , Ovinos
5.
PLoS One ; 10(8): e0134453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291533

RESUMO

BACKGROUND: Schmallenberg virus (SBV), an arboviral pathogen of ruminants, emerged in northern Europe during 2011 and has subsequently spread across a vast geographic area. While Culicoides biting midges (Diptera: Ceratopogonidae) have been identified as a biological transmission agent of SBV, the role of mosquitoes (Diptera: Culicidae) as potential vectors has not been defined beyond small-scale field collections in affected areas. Culex pipiens L. are one of the most widespread mosquitoes in northern Europe; they are present on farms across the region and have previously been implicated as vectors of several other arboviruses. We assessed the ability of three colony lines of Cx. pipiens, originating from geographically diverse field populations, to become fully infected by SBV using semi-quantitative real-time RT-PCR (sqPCR). FINDINGS: Two colony lines of Cx. pipiens were created in the UK ('Brookwood' and 'Caldbeck') from field collections of larvae and pupae and characterised using genetic markers. A third strain of Cx. pipiens from CVI Wageningen, The Netherlands, was also screened during experiments. Intrathoracic inoculation of the Brookwood line resulted in infections after 14 days that were characterised by high levels of RNA throughout individuals, but which demonstrated indirect evidence of salivary gland barriers. Feeding of 322 individuals across the three colony lines on a membrane based infection system resulted in no evidence of full dissemination of SBV, although infections did occur in a small proportion of Cx. pipiens from each line. CONCLUSIONS/SIGNIFICANCE: This study established two novel lines of Cx. pipiens mosquitoes of UK origin in the laboratory and subsequently tested their competence for SBV. Schmallenberg virus replication and dissemination was restricted, demonstrating that Cx. pipiens is unlikely to be an epidemiologically important vector of the virus in northern Europe.


Assuntos
Infecções por Bunyaviridae/veterinária , Culex/virologia , Insetos Vetores/virologia , Orthobunyavirus/isolamento & purificação , Ruminantes/virologia , Animais , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Culex/genética , DNA/genética , DNA/isolamento & purificação , Insetos Vetores/genética , Masculino , Orthobunyavirus/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reino Unido
6.
PLoS One ; 9(5): e96049, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797910

RESUMO

The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26) in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.


Assuntos
Vírus Bluetongue , Bluetongue/transmissão , Ceratopogonidae/virologia , Insetos Vetores/virologia , Modelos Biológicos , Sorogrupo , Animais , Bluetongue/sangue , Cabras , RNA Viral/sangue
7.
Antiviral Res ; 109: 1-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973760

RESUMO

Lumpy skin disease is of significant economic impact for the cattle industry in Africa. The disease is currently spreading aggressively in the Near East, posing a threat of incursion to Europe and Asia. Due to cross-protection within the Capripoxvirus genus, sheep pox virus (SPPV) vaccines have been widely used for cattle against lumpy skin disease virus (LSDV). In the Middle East and the Horn of Africa these vaccines have been associated with incomplete protection and adverse reactions in cattle post-vaccination. The present study confirms that the real identity of the commonly used Kenyan sheep and goat pox vaccine virus (KSGP) O-240 is not SPPV but is actually LSDV. The low level attenuation of this virus is likely to be not sufficient for safe use in cattle, causing clinical disease in vaccinated animals. In addition, Isiolo and Kedong goat pox strains, capable of infecting sheep, goats and cattle are identified for potential use as broad-spectrum vaccine candidates against all capripox diseases.


Assuntos
Capripoxvirus/isolamento & purificação , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vacinas Virais/isolamento & purificação , Animais , Capripoxvirus/classificação , Capripoxvirus/genética , Capripoxvirus/imunologia , Bovinos , Doenças das Cabras/virologia , Cabras , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/classificação , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/imunologia , Dados de Sequência Molecular , Filogenia , Ovinos , Doenças dos Ovinos/virologia , Vacinação , Vacinas Atenuadas/classificação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
PLoS One ; 8(3): e57747, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23520481

RESUMO

BACKGROUND: The recent unprecedented emergence of arboviruses transmitted by Culicoides biting midges in northern Europe has necessitated the development of techniques to differentiate competent vector species. At present these techniques are entirely reliant upon interpretation of semi-quantitative RT-PCR (sqPCR) data in the form of Cq values used to infer the presence of viral RNA in samples. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates the advantages and limitations of sqPCR in this role by comparing infection and dissemination rates of Schmallenberg virus (SBV) in two colony lines of Culicoides. Through the use of these behaviorally malleable lines we provide tools for demarcating arbovirus infection and dissemination rates in Culicoides which to date have prevented clear implication of primary vector species in northern Europe. The study demonstrates biological transmission of SBV in an arthropod vector, supporting the conclusions from field-caught Culicoides and provides a general framework for future assessment of vector competence of Culicoides for arboviruses using sqPCR. CONCLUSIONS/SIGNIFICANCE: When adopting novel diagnostic technologies, correctly implicating vectors of arboviral pathogens requires a coherent laboratory framework to fully understand the implications of results produced in the field. This study illustrates these difficulties and provides a full examination of sqPCR in this role for the Culicoides-arbovirus system.


Assuntos
Ceratopogonidae/virologia , Insetos Vetores/virologia , Orthobunyavirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Ceratopogonidae/genética , Insetos Vetores/genética
9.
J Virol Methods ; 179(2): 419-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138682

RESUMO

Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries.


Assuntos
Capripoxvirus/isolamento & purificação , DNA Viral/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Infecções por Poxviridae/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Medicina Veterinária/métodos , Virologia/métodos , Animais , Automação/métodos , Capripoxvirus/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/virologia , DNA Viral/genética , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras , Infecções por Poxviridae/diagnóstico , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia
10.
J Virol Methods ; 171(2): 401-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21126540

RESUMO

Peste des petits ruminants virus (PPRV) causes a devastating disease of small ruminants present across much of Africa and Asia. Recent surveillance activities and phylogenetic analyses have suggested that the virus is an emerging problem as it is now being detected in areas previously free of the disease. As such, the virus not only is threatening small ruminant production and agricultural stability in the developing world, but also poses an economic threat to livestock in the European Union (EU) through introduction from European Turkey and North Africa. This report describes the development of a high throughput, rapid, real time RT-PCR method for the sensitive and specific detection of PPRV using robotic RNA extraction. This assay targets the nucleocapsid (N) gene of PPRV and has been shown to detect all four genetic lineages of PPRV in tissues, ocular and nasal swabs and blood samples collected in the field. The lowest detection limit achieved was approximately 10 genome copies/reaction, making this assay an ideal tool for the sensitive and rapid detection of PPRV in diagnostic laboratories.


Assuntos
Peste dos Pequenos Ruminantes/diagnóstico , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ruminantes/virologia , Virologia/métodos , Animais , Primers do DNA/genética , Nucleocapsídeo/genética , Peste dos Pequenos Ruminantes/virologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa