Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 24(7): e37699, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857356

RESUMO

BACKGROUND: Physical activity (PA) during pregnancy is an effective and safe way to improve maternal health in uncomplicated pregnancies. However, compliance with PA recommendations remains low among pregnant women. OBJECTIVE: The purpose of this study was to evaluate the effects of offering structured supervised exercise training (EXE) or motivational counseling on PA (MOT) during pregnancy on moderate-to-vigorous intensity physical activity (MVPA) level. Additionally, complementary measures of PA using the Pregnancy Physical Activity Questionnaire (PPAQ) and gold standard doubly labeled water (DLW) technique were investigated. The hypotheses were that both EXE and MOT would increase MVPA in pregnancy compared with standard care (CON) and that EXE would be more effective than MOT. In addition, the association between MVPA and the number of sessions attended was explored. METHODS: A randomized controlled trial included 220 healthy, inactive pregnant women with a median gestational age of 12.9 (IQR 9.4-13.9) weeks. A total of 219 women were randomized to CON (45/219), EXE (87/219), or MOT (87/219). The primary outcome was MVPA (minutes per week) from randomization to the 29th gestational week obtained by a wrist-worn commercial activity tracker (Vivosport, Garmin International). PA was measured by the activity tracker throughout pregnancy, PPAQ, and DLW. The primary outcome analysis was performed as an analysis of covariance model adjusting for baseline PA. RESULTS: The average MVPA (minutes per week) from randomization to the 29th gestational week was 33 (95% CI 18 to 47) in CON, 50 (95% CI 39 to 60) in EXE, and 40 (95% CI 30 to 51) in MOT. When adjusted for baseline MVPA, participants in EXE performed 20 (95% CI 4 to 36) minutes per week more MVPA than participants in CON (P=.02). MOT was not more effective than CON; EXE and MOT also did not differ. MVPA was positively associated with the number of exercise sessions attended in EXE from randomization to delivery (P=.04). Attendance was higher for online (due to COVID-19 restrictions) compared with physical exercise training (P=.03). Adverse events and serious adverse events did not differ between groups. CONCLUSIONS: Offering EXE was more effective than CON to increase MVPA among pregnant women, whereas offering MOT was not. MVPA in the intervention groups did not reach the recommended level in pregnancy. Changing the intervention to online due to COVID-19 restrictions did not affect MVPA level but increased exercise participation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03679130; https://clinicaltrials.gov/ct2/show/NCT03679130. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2020-043671.


Assuntos
COVID-19 , Gestantes , COVID-19/prevenção & controle , Aconselhamento , Exercício Físico/psicologia , Feminino , Humanos , Lactente , Gravidez
2.
J Physiol ; 595(9): 2969-2983, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28231611

RESUMO

KEY POINTS: Exercise training effectively improves vascular and skeletal muscle function; however, these effects of training may be blunted in postmenopausal women as a result of the loss of oestrogens. Accordingly, the capacity to deliver oxygen to the active muscles may also be impaired in postmenopausal women. In both premenopausal and recent postmenopausal women, exercise training was shown to improve leg vascular and skeletal muscle mitochondrial function. Interestingly, these effects were more pronounced in postmenopausal women. Skeletal muscle oxygen supply and utilization were similar in the two groups of women. These findings suggest that the early postmenopausal phase is associated with an enhanced capacity of the leg vasculature and skeletal muscle mitochondria to adapt to exercise training and that the ability to deliver oxygen to match the demand of the active muscles is preserved in the early phase following the menopausal transition. ABSTRACT: Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women as a result of the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (mean ± SEM: 3.1 ± 0.5 years after final menstrual period) women only separated by 4 years of age (mean ± SEM: 50 ± 0 years vs. 54 ± 1 years) were included. Before training, leg blood flow, O2 delivery, O2 uptake and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P < 0.05) leg blood flow, O2 delivery, O2 uptake, lactate release, blood pressure and heart rate during the same absolute workloads in postmenopausal women. These effects were not detected in premenopausal women. Quadriceps muscle protein contents of mitochondrial complex II, III and IV; endothelial nitric oxide synthase (eNOS); cyclooxygenase (COX)-1; COX-2; and oestrogen-related receptor α (ERRα) were increased (P < 0.05) with training in postmenopausal women, whereas only the levels of mitochondrial complex V, eNOS and COX-2 were increased (P < 0.05) in premenopausal women. These findings demonstrate that vascular and skeletal muscle mitochondrial adaptations to aerobic high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase.


Assuntos
Adaptação Fisiológica , Treinamento Intervalado de Alta Intensidade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Pós-Menopausa/fisiologia , Fluxo Sanguíneo Regional , Feminino , Humanos , Perna (Membro)/fisiologia , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa