Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1156-1175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332148

RESUMO

Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.


Assuntos
Macrófagos , Rhinovirus , Humanos , Macrófagos/microbiologia , Macrófagos Alveolares , Fagocitose , Bactérias
2.
J Virol ; 98(10): e0149924, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39324790

RESUMO

Human rhinovirus (HRV) infections are the leading cause of disease exacerbations in individuals with chronic pulmonary diseases, primarily due to impaired macrophage functions, resulting in defective bacterial elimination. We previously demonstrated that HRV16 impairs macrophages' functions in an ARL5b-dependent manner. In permissive cells, ARL5b acted as an HRV16 restriction factor and was repressed. Here, we delve into the dual regulation of ARL5b by HRV16 in both cell types. We analyzed the effect of HRV16 on primary human macrophages using neutralizing antibodies, specific inhibitors, siRNA, and chromatin immune precipitation. Our study reveals that, while the virus does not replicate in macrophages, it induces interferon and pro-inflammatory responses. We identify the ICAM-1-PKR-ATF2 signaling axis as crucial for ARL5b induction in macrophages, whereas only ICAM-1 plays a role in ARL5b repression in permissive cells. Furthermore, HRV16 triggers epigenetic reprogramming in both cell types at the ARL5b promoter. In macrophages, epigenetic changes are ATF2 dependent. In conclusion, our findings highlight previously unknown signaling pathways activated by HRV16 in macrophages. Targeting these pathways could offer novel strategies to improve outcomes for individuals with respiratory conditions. IMPORTANCE: Human rhinovirus (HRV) infections are the leading cause of disease exacerbations in individuals with chronic pulmonary conditions and are frequently associated with bacterial superinfections due to defective bacterial elimination by macrophages. We previously identified ARL5b-induction by HRV16 to be responsible for the impairment of bacteria elimination. In contrast, in permissive cells, ARL5b is repressed and acts as a restriction factor for HRV16. Here, we investigated the dual regulation of ARL5b by HRV16 in these cells. Our study reveals that the ICAM-1-PKR-ATF2 signaling axis is crucial for ARL5b induction in macrophages. In permissive cells, only ICAM-1 plays a role in ARL5b repression. Moreover, HRV16 triggered epigenetic reprogramming in macrophages. ARL5b promoter was repressed in an ATF2-dependent manner. Collectively, our findings reveal previously unknown signaling pathways activated by HRV16 in macrophages. Targeting these pathways provides novel strategies to target ARL5b expression specifically in macrophages and improve outcomes for individuals with respiratory pathologies.


Assuntos
Fator 2 Ativador da Transcrição , Molécula 1 de Adesão Intercelular , Macrófagos , Rhinovirus , Transdução de Sinais , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Macrófagos/virologia , Macrófagos/metabolismo , Rhinovirus/fisiologia , Fator 2 Ativador da Transcrição/metabolismo , Fator 2 Ativador da Transcrição/genética , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/genética , Regiões Promotoras Genéticas , Epigênese Genética
3.
J Neuroinflammation ; 19(1): 307, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539803

RESUMO

BACKGROUND: Zika virus (ZIKV) infection at postnatal or adult age can lead to neurological disorders associated with cognitive defects. Yet, how mature neurons respond to ZIKV remains substantially unexplored. METHODS: The impact of ZIKV infection on mature neurons and microglia was analyzed at the molecular and cellular levels, in vitro using immunocompetent primary cultured neurons and microglia, and in vivo in the brain of adult immunocompetent mice following intracranial ZIKV inoculation. We have used C57BL/6 and the genetically diverse Collaborative Cross mouse strains, displaying a broad range of susceptibility to ZIKV infection, to question the correlation between the effects induced by ZIKV infection on neurons and microglia and the in vivo susceptibility to ZIKV. RESULTS: As a result of a delayed induction of interferon beta (IFNB) expression and response, infected neurons displayed an inability to stop ZIKV replication, a trait that was further increased in neurons from susceptible mice. Alongside with an enhanced expression of ZIKV RNA, we observed in vivo, in the brain of susceptible mice, an increased level of active Iba1-expressing microglial cells occasionally engulfing neurons and displaying a gene expression profile close to the molecular signature of disease-associated microglia (DAM). In vivo as well as in vitro, only neurons and not microglial cells were identified as infected, raising the question of the mechanisms underlying microglia activation following brain ZIKV infection. Treatment of primary cultured microglia with conditioned media from ZIKV-infected neurons demonstrated that type-I interferons (IFNs-I) secreted by neurons late after infection activate non-infected microglial cells. In addition, ZIKV infection induced pathological phosphorylation of Tau (pTau) protein, a hallmark of neurodegenerative tauopathies, in vitro and in vivo with clusters of neurons displaying pTau surrounded by active microglial cells. CONCLUSIONS: We show that ZIKV-infected mature neurons display an inability to stop viral replication in link with a delayed IFNB expression and response, while signaling microglia for activation through IFNs-I secreted at late times post-infection. In the brain of ZIKV-infected susceptible mice, uninfected microglial cells adopt an active morphology and a DAM expression profile, surrounding and sometimes engulfing neurons while ZIKV-infected neurons accumulate pTau, overall reflecting a tauopathy-like phenotype.


Assuntos
Tauopatias , Infecção por Zika virus , Zika virus , Camundongos , Animais , Infecção por Zika virus/metabolismo , Zika virus/genética , Interferon beta/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Tauopatias/patologia , Replicação Viral , Fenótipo
4.
EMBO Rep ; 21(1): e47963, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31721415

RESUMO

Human rhinovirus is a causative agent of severe exacerbations of chronic obstructive pulmonary disease (COPD). COPD is characterised by an increased number of alveolar macrophages with diminished phagocytic functions, but how rhinovirus infection affects macrophage function is still unknown. Here, we describe that human rhinovirus 16 impairs bacterial uptake and receptor-mediated phagocytosis in macrophages. The stalled phagocytic cups contain accumulated F-actin. Interestingly, we find that human rhinovirus 16 downregulates the expression of Arpin, a negative regulator of the Arp2/3 complex. Importantly, re-expression of the protein rescues defective internalisation in human rhinovirus 16-treated cells, demonstrating that Arpin is a key factor targeted to impair phagocytosis. We further show that Arpin is required for efficient uptake of multiple targets, for F-actin cup formation and for successful phagosome completion in macrophages. Interestingly, Arpin is recruited to sites of membrane extension and phagosome closure. Thus, we identify Arpin as a central actin regulator during phagocytosis that it is targeted by human rhinovirus 16, allowing the virus to perturb bacterial internalisation and phagocytosis in macrophages.


Assuntos
Fagocitose , Rhinovirus , Proteínas de Transporte , Humanos , Macrófagos , Macrófagos Alveolares , Fagossomos
5.
FASEB J ; 33(10): 11606-11614, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31242766

RESUMO

Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow-derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin-rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.-Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fagocitose/fisiologia , Actinas/metabolismo , Animais , Apoptose/fisiologia , Caenorhabditis elegans/metabolismo , Células Cultivadas , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Transdução de Sinais/fisiologia
6.
Traffic ; 17(5): 487-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26847957

RESUMO

Phagocytosis is a mechanism used by macrophages to internalize and eliminate microorganisms or cellular debris. It relies on profound rearrangements of the actin cytoskeleton that is the driving force allowing plasma membrane extension around the particle. The closure step of phagocytosis, however, remains poorly defined. We used a dedicated experimental setup with Total Internal Reflection Fluorescence Microscopy (TIRFM) to monitor phagosome formation and closure in three dimensions in living cells. We show that dynamin-2, which mediates the scission of endocytic vesicles, was recruited early and concomitantly with actin during phagosome formation. Dynamin-2 accumulated at the site of phagosome closure in living macrophages. Inhibition of its activity with dominant negative mutants or drugs demonstrated that dynamin-2 is implicated in actin dynamics and pseudopod extension. Depolymerization of actin led to impaired dynamin-2 recruitment or activity. Finally, we show that dynamin-2 plays a critical role in the effective scission of the phagosome from the plasma membrane. Thus, we establish that a cross talk between actin and dynamin takes place for phagosome formation and closure before dynamin functions for scission.


Assuntos
Actinas/metabolismo , Dinaminas/metabolismo , Fagossomos/metabolismo , Fagocitose
7.
Blood ; 115(21): 4226-36, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20299515

RESUMO

Phagocytosis in macrophages is receptor mediated and relies on actin polymerization coordinated with the focal delivery of intracellular membranes that is necessary for optimal phagocytosis of large particles. Here we show that phagocytosis by various receptors was inhibited in primary human macrophages infected with wild-type HIV-1 but not with a nef-deleted virus. We observed no major perturbation of F-actin accumulation, but adaptor protein 1 (AP1)-positive endosome recruitment was inhibited in HIV-1-infected cells. Expression of negative factor (Nef) was sufficient to inhibit phagocytosis, and myristoylation as well as the LL and DD motifs involved in association of Nef with AP complexes were important for this inhibition. We observed that Nef interferes with AP1 in association with membranes and/or with a cleaved regulatory form of AP1. Finally, an alteration of the recruitment of vesicle-associated membrane protein (VAMP3)- and tumor necrosis factor-alpha (TNFalpha)-positive recycling endosomes regulated by AP1, but not of VAMP7-positive late endosomes, was observed in phagocytic cups of HIV-1-infected macrophages. We conclude that HIV-1 impairs optimal phagosome formation through Nef-dependent perturbation of the endosomal remodeling relying on AP1. We therefore identified a mechanism of macrophage function down-regulation in infected cells.


Assuntos
HIV-1/fisiologia , HIV-1/patogenicidade , Macrófagos/imunologia , Macrófagos/virologia , Fagocitose/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Actinas/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Compartimento Celular , Linhagem Celular , Endossomos/metabolismo , Deleção de Genes , Genes nef , HIV-1/genética , Humanos , Técnicas In Vitro , Macrófagos/fisiologia , Camundongos , Modelos Biológicos , Proteínas R-SNARE/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
8.
Sci Adv ; 5(10): eaax0821, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663020

RESUMO

Using a cell-based assay monitoring differential protein transport in the secretory pathway coupled to high-content screening, we have identified three molecules that specifically reduce the delivery of the major co-receptor for HIV-1, CCR5, to the plasma membrane. They have no effect on the closely related receptors CCR1 and CXCR4. These molecules are also potent in primary macrophages as they markedly decrease HIV entry. At the molecular level, two of these molecules inhibit the critical palmitoylation of CCR5 and thereby block CCR5 in the early secretory pathway. Our results open a clear therapeutics avenue based on trafficking control and demonstrate that preventing HIV infection can be performed at the level of its receptor delivery.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Transporte Proteico/fisiologia , Receptores CCR5/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Receptores CCR1/metabolismo , Receptores CXCR4/metabolismo , Via Secretória/fisiologia
9.
Front Immunol ; 9: 2908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619272

RESUMO

Human rhinovirus is frequently seen as an upper respiratory tract infection but growing evidence proves the virus can cause lower respiratory tract infections in patients with chronic inflammatory lung diseases including chronic obstructive pulmonary disease (COPD). In addition to airway epithelial cells, macrophages are crucial for regulating inflammatory responses to viral infections. However, the response of macrophages to HRV has not been analyzed in detail. We used in vitro monocyte-derived human macrophages to study the cytokine secretion of macrophages in response to the virus. Our results showed that macrophages were competent at responding to HRV, as a robust cytokine response was detected. However, after subsequent exposure to non-typeable Haemophilus influenzae (NTHi) or to LPS, HRV-treated macrophages secreted reduced levels of pro-inflammatory or regulatory cytokines. This "paralyzed" phenotype was not mimicked if the macrophages were pre-treated with LPS or CpG instead of the virus. These results begin to deepen our understanding into why patients with COPD show HRV-induced exacerbations and why they mount a defective response toward NTHi.


Assuntos
Coinfecção/imunologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Macrófagos/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Coinfecção/microbiologia , Citocinas/imunologia , Citocinas/metabolismo , Progressão da Doença , Infecções por Haemophilus/microbiologia , Células HeLa , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Monócitos , Oligodesoxirribonucleotídeos/imunologia , Infecções por Picornaviridae/virologia , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/patologia
10.
Cell Rep ; 21(1): 181-194, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978472

RESUMO

Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Regulação Neoplásica da Expressão Gênica , Microtúbulos/imunologia , Fatores de Transcrição NFATC/genética , Linfócitos T Reguladores/imunologia , Polipose Adenomatosa do Colo/imunologia , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Células Jurkat , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Fatores de Transcrição NFATC/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/patologia
11.
J Cell Biol ; 211(2): 359-72, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26504171

RESUMO

Human immunodeficiency virus type 1 (HIV-1) impairs major functions of macrophages but the molecular basis for this defect remains poorly characterized. Here, we show that macrophages infected with HIV-1 were unable to respond efficiently to phagocytic triggers and to clear bacteria. The maturation of phagosomes, defined by the presence of late endocytic markers, hydrolases, and reactive oxygen species, was perturbed in HIV-1-infected macrophages. We showed that maturation arrest occurred at the level of the EHD3/MICAL-L1 endosomal sorting machinery. Unexpectedly, we found that the regulatory viral protein (Vpr) was crucial to perturb phagosome maturation. Our data reveal that Vpr interacted with EB1, p150(Glued), and dynein heavy chain and was sufficient to critically alter the microtubule plus end localization of EB1 and p150(Glued), hence altering the centripetal movement of phagosomes and their maturation. Thus, we identify Vpr as a modulator of the microtubule-dependent endocytic trafficking in HIV-1-infected macrophages, leading to strong alterations in phagolysosome biogenesis.


Assuntos
HIV-1/imunologia , Macrófagos/imunologia , Microtúbulos/metabolismo , Fagocitose/imunologia , Salmonella typhimurium/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Macrófagos/metabolismo , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/metabolismo , Oxigenases de Função Mista , Fagocitose/fisiologia , Fagossomos/metabolismo , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
12.
Dev Cell ; 23(5): 954-67, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23153494

RESUMO

The protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs. Unexpectedly, we found Bcl10 in a complex with the clathrin adaptors AP1 and EpsinR. In particular, Bcl10 was required to locally deliver the vesicular OCRL phosphatase that regulates PI(4,5)P(2) and F-actin turnover, both crucial for the completion of phagosome closure. Thus, we identify Bcl10 as an early coordinator of NF-κB-mediated immune response with endosomal trafficking and signaling to F-actin remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fator de Transcrição AP-1/metabolismo , Actinas/metabolismo , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteína 10 de Linfoma CCL de Células B , Linhagem Celular , Endossomos/metabolismo , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Fagocitose , Receptores Fc/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
J Cell Biol ; 183(7): 1287-98, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114595

RESUMO

Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient phagocytosis triggered by alphaMbeta2 integrin/complement receptor activation. This property is not observed for EB1 and EB3. Accordingly, whereas CLIP-170 is dynamically enriched at the site of phagocytosis, EB1 is not. Furthermore, we observe that CLIP-170 controls the recruitment of the formin mDia1, an actin-nucleating protein, at the onset of phagocytosis and thereby controls actin polymerization events that are essential for phagocytosis. CLIP-170 directly interacts with the formin homology 2 domain of mDia1. The interaction between CLIP-170 and mDia1 is negatively regulated during alphaMbeta2-mediated phagocytosis. Our results unravel a new microtubule/actin cooperation that involves CLIP-170 and mDia1 and that functions downstream of alphaMbeta2 integrins.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Antígeno de Macrófago 1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Fagocitose/fisiologia , Animais , Células Cultivadas , Forminas , Macrófagos/metabolismo , Camundongos , Interferência de RNA , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa