Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37116470

RESUMO

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Assuntos
Vírus da Caxumba , Infecção Persistente , Humanos , Vírus da Caxumba/fisiologia , Nucleocapsídeo , Fosfoproteínas/metabolismo , Replicação Viral
2.
Nat Methods ; 20(12): 1900-1908, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932397

RESUMO

Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.


Assuntos
Redes Neurais de Computação , Organelas , Humanos , Microscopia Crioeletrônica/métodos , Ligantes , Organelas/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos
3.
Nature ; 586(7831): 796-800, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879490

RESUMO

Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange1,2. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood. Here we combine in situ structural biology and integrative modelling with correlative light and electron microscopy and molecular perturbation to structurally analyse NPCs in intact Saccharomyces cerevisiae cells within the context of nuclear envelope remodelling. We find an in situ conformation and configuration of the Nup subcomplexes that was unexpected from the results of previous in vitro analyses. The configuration of the Nup159 complex appears critical to spatially accommodate its function as an mRNA export platform, and as a mediator of NPC turnover. The omega-shaped nuclear envelope herniae that accumulate in nup116Δ cells3 conceal partially assembled NPCs lacking multiple subcomplexes, including the Nup159 complex. Under conditions of starvation, herniae of a second type are formed that cytoplasmically expose NPCs. These results point to a model of NPC turnover in which NPC-containing vesicles bud off from the nuclear envelope before degradation by the autophagy machinery. Our study emphasizes the importance of investigating the structure-function relationship of macromolecular complexes in their cellular context.


Assuntos
Microscopia Crioeletrônica , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Autofagia , Modelos Moleculares , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tomografia
4.
Proc Natl Acad Sci U S A ; 120(45): e2314781120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903258

RESUMO

Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.


Assuntos
Príons , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Príons/genética , Príons/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Amiloide/genética , Amiloide/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Fatores de Processamento de RNA/genética , Proteínas Nucleares/metabolismo , Enzimas Reparadoras do DNA/genética
5.
Nucleic Acids Res ; 51(13): 7025-7035, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293963

RESUMO

Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.


Assuntos
Bacteriófagos , Montagem de Vírus , Bacteriófagos/genética , Bacteriófagos/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Empacotamento do DNA , DNA Viral/genética , Endodesoxirribonucleases/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38261628

RESUMO

OBJECTIVES: Anti-citrullinated protein antibody(ACPA)-positive and ACPA-negative rheumatoid arthritis(RA) differ in underlying risk factors but have a similar clinical presentation at RA-diagnosis. It is unknown what the ACPA-associated differences or similarities are during the symptomatic at-risk stage of RA, clinically suspect arthralgia(CSA). To deepen insights into these differences/similarities, we compared the course of symptoms/impairments and subclinical joint-inflammation in the CSA-phase during progression to inflammatory arthritis(IA) or to CSA-resolution. METHODS: 845 CSA-patients were followed for median 24 months; 136 patients developed IA and additional 355/505 patients had resolution of CSA according to rheumatologists. Patient burden (pain/morning stiffness/fatigue/functional disabilities/presenteeism) was assessed at baseline, 4/12/24 months and IA-development. Subclinical joint-inflammation in hands/feet was assessed over time with 1.5 T-MRI. Linear/Poisson mixed models were used. RESULTS: Both in ACPA-positive and ACPA-negative patients, patient burden increased towards IA-development and decreased towards CSA-resolution. However, patient burden was lower in ACPA-positive than ACPA-negative disease on all timepoints. Conversely, subclinical joint-inflammation tended to increase more rapidly during development of ACPA-positive IA (IRR = 1.52,95%CI = 0.94-2.47, p= 0.089), and remained higher over time in ACPA-positive CSA-patients achieving resolution compared with ACPA-negative patients (IRR = 1.52,95%CI = 1.07-2.15, p= 0.018). Although correlation coefficients between changes in patient burden and subclinical joint-inflammation during progression to IA were weak, they were consistently higher in ACPA-positive than ACPA-negative disease, e.g. ρ = 0.29 vs ρ = 0.12 for functional disabilities. CONCLUSION: During RA-development and CSA-resolution, ACPA-positive CSA-patients have lower patient burden, but more subclinical joint-inflammation than ACPA-negative CSA-patients. These data strengthen the notion that the development of ACPA-positive and ACPA-negative RA is pathophysiologically different, and encourage further research on these differences.

7.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947691

RESUMO

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Assuntos
Adenosina Trifosfatases , Montagem de Vírus , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Montagem de Vírus/genética , Proteínas Virais/genética , Proteínas Virais/química , Empacotamento do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , DNA Viral/genética , DNA Viral/química
8.
Postgrad Med J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679808

RESUMO

BACKGROUND: Low back pain (LBP) is a leading cause of disability worldwide and has posed numerous health and socioeconomic challenges. This study compared whether nonsteroidal anti-inflammatory drugs (NSAIDs) in combination with tramadol, tizanidine or placebo would be the best treatment regime to improve the Roland Morris Disability Questionnaire (RMDQ) scores at 1 week. METHODS: This was a multi-center, double-blind, randomized, and placebo-controlled trial including adult patients with acute LBP and sciatica in three emergency departments in Hong Kong. Patients were randomized to the receive tramadol 50 mg, tizanidine 2 mg, or placebo every 6 hours for 2 weeks in a 1:1:1 ratio. The RMDQ and other secondary outcomes were measured at baseline, Day 2, 7, 14, 21, and 28. Data were analyzed on an intention to treat basis. Crude and adjusted mean differences in the changes of RMDQ and NRS scores from baseline to Day 7 between tizanidine/tramadol and placebo were determined with 95% confidence intervals. RESULTS: Two hundred and ninety-one patients were analyzed with the mean age of 47.4 years and 57.7% were male. The primary outcome of mean difference in RMDQs on Day 7 (compared with baseline) was non-significant for tizanidine compared with placebo (adjusted mean difference - 0.56, 95% CI -2.48 to 1.37) and tramadol compared with placebo (adjusted mean difference - 0.85, 95% CI -2.80 to 1.10). Only 23.7% were fully compliant to the treatment allocated. Complier Average Causal Effect analysis also showed no difference in the primary outcome for the tizanidine and tramadol versus placebo. CONCLUSION: Among patients with acute LBP and sciatica presenting to the ED, adding tramadol or tizanidine to diclofenac did not improve functional recovery.

9.
Curr Genet ; 67(6): 833-847, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34319422

RESUMO

The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.


Assuntos
Resistência à Doença/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Doenças Priônicas/etiologia , Príons/imunologia , Amiloide/química , Amiloide/imunologia , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/imunologia , Proteínas Amiloidogênicas/metabolismo , Animais , Autofagia , Suscetibilidade a Doenças/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Doenças Priônicas/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribossomos/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(40): E8402-E8410, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923943

RESUMO

The yeast prions [PSI+] and [URE3] are folded in-register parallel ß-sheet amyloids of Sup35p and Ure2p, respectively. In a screen for antiprion systems curing [PSI+] without protein overproduction, we detected Siw14p as an antiprion element. An array of genetic tests confirmed that many variants of [PSI+] arising in the absence of Siw14p are cured by restoring normal levels of the protein. Siw14p is a pyrophosphatase specifically cleaving the ß phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5), suggesting that increased levels of this or some other inositol polyphosphate favors [PSI+] propagation. In support of this notion, we found that nearly all variants of [PSI+] isolated in a WT strain were lost upon loss of ARG82, which encodes inositol polyphosphate multikinase. Inactivation of the Arg82p kinase by D131A and K133A mutations (preserving Arg82p's nonkinase transcription regulation functions) resulted the loss of its ability to support [PSI+] propagation. The loss of [PSI+] in arg82Δ is independent of Hsp104's antiprion activity. [PSI+] variants requiring Arg82p could propagate in ipk1Δ (IP5 kinase), kcs1Δ (IP6 5-kinase), vip1Δ (IP6 1-kinase), ddp1Δ (inositol pyrophosphatase), or kcs1Δ vip1Δ mutants but not in ipk1Δ kcs1Δ or ddp1Δ kcs1Δ double mutants. Thus, nearly all [PSI+] prion variants require inositol poly-/pyrophosphates for their propagation, and at least IP6 or 5PP-IP4 can support [PSI+] propagation.


Assuntos
Inositol/metabolismo , Polifosfatos/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Príons/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
12.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635197

RESUMO

Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear ß-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.


Assuntos
Príons/genética , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Evolução Molecular , Genes Fúngicos , Variação Genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/antagonistas & inibidores , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química
13.
Biochemistry ; 57(8): 1285-1292, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29377675

RESUMO

The amyloid-based yeast prions are folded in-register parallel ß-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.


Assuntos
Inositol/metabolismo , Polifosfatos/metabolismo , Príons/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Curr Genet ; 64(3): 571-574, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29243174

RESUMO

The [PSI+] prion is a folded in-register parallel ß-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.


Assuntos
Inositol/química , Polifosfatos/metabolismo , Príons/genética , Metabolismo Energético , Polifosfatos/química , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero , Transcrição Gênica
15.
Nucleic Acids Res ; 44(2): 776-89, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26673721

RESUMO

The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses.


Assuntos
Fagos Bacilares/genética , Endodesoxirribonucleases/metabolismo , Montagem de Vírus/fisiologia , Fagos Bacilares/fisiologia , Sítios de Ligação , DNA/química , DNA/metabolismo , Empacotamento do DNA , DNA Viral/química , DNA Viral/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Sequências Hélice-Volta-Hélice , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Ultracentrifugação/métodos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética
16.
Biochemistry ; 55(36): 5021-7, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27559824

RESUMO

Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterization of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with a 1:1 stoichiometry and with a similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model in which the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Polarização de Fluorescência , Humanos , Ligação Proteica
17.
Mol Microbiol ; 97(3): 439-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899475

RESUMO

Haloalkane dehalogenases (HLDs) catalyse the hydrolysis of haloalkanes to alcohols, offering a biological solution for toxic haloalkane industrial wastes. Hundreds of putative HLD genes have been identified in bacterial genomes, but relatively few enzymes have been characterised. We identified two novel HLDs in the genome of Mycobacterium rhodesiae strain JS60, an isolate from an organochlorine-contaminated site: DmrA and DmrB. Both recombinant enzymes were active against C2-C6 haloalkanes, with a preference for brominated linear substrates. However, DmrA had higher activity against a wider range of substrates. The kinetic parameters of DmrA with 4-bromobutyronitrile as a substrate were Km = 1.9 ± 0.2 mM, kcat = 3.1 ± 0.2 s(-1) . DmrB showed the highest activity against 1-bromohexane. DmrA is monomeric, whereas DmrB is tetrameric. We determined the crystal structure of selenomethionyl DmrA to 1.7 Å resolution. A spacious active site and alternate conformations of a methionine side-chain in the slot access tunnel may contribute to the broad substrate activity of DmrA. We show that M. rhodesiae JS60 can utilise 1-iodopropane, 1-iodobutane and 1-bromobutane as sole carbon and energy sources. This ability appears to be conferred predominantly through DmrA, which shows significantly higher levels of upregulation in response to haloalkanes than DmrB.


Assuntos
Alcanos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/metabolismo , Mycobacterium/enzimologia , Mycobacterium/metabolismo , Carbono/metabolismo , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , Metabolismo Energético , Microbiologia Ambiental , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrólise , Cinética , Dados de Sequência Molecular , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/isolamento & purificação , Conformação Proteica , Análise de Sequência de DNA , Especificidade por Substrato
19.
Epidemiol Infect ; 143(14): 3011-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25697407

RESUMO

Leafy vegetables are an essential component of a healthy diet; however, they have been associated with high-profile outbreaks causing severe illnesses. We reviewed leafy vegetable-associated outbreaks reported to the Centers for Disease Control and Prevention between 1973 and 2012. During the study period, 606 leafy vegetable-associated outbreaks, with 20 003 associated illnesses, 1030 hospitalizations, and 19 deaths were reported. On average, leafy vegetable-associated outbreaks were larger than those attributed to other food types. The pathogens that most often caused leafy vegetable-associated outbreaks were norovirus (55% of outbreaks with confirmed aetiology), Shiga toxin-producing Escherichia coli (STEC) (18%), and Salmonella (11%). Most outbreaks were attributed to food prepared in a restaurant or catering facility (85%). An ill food worker was implicated as the source of contamination in 31% of outbreaks. Efforts by local, state, and federal agencies to control leafy vegetable contamination and outbreaks should span from the point of harvest to the point of preparation.


Assuntos
Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Gastroenterite/epidemiologia , Verduras , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/microbiologia , Gastroenterite/parasitologia , Gastroenterite/virologia , Humanos , Parasitos/isolamento & purificação , Infecções por Protozoários/epidemiologia , Infecções por Protozoários/parasitologia , Estados Unidos/epidemiologia , Viroses/epidemiologia , Viroses/virologia , Vírus/classificação , Vírus/isolamento & purificação
20.
Epidemiol Infect ; 142(11): 2270-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24398154

RESUMO

Non-O157 Shiga toxin-producing Escherichia coli (STEC) infections are increasingly detected, but sources are not well established. We summarize outbreaks to 2010 in the USA. Single-aetiology outbreaks were defined as ⩾2 epidemiologically linked culture-confirmed non-O157 STEC infections; multiple-aetiology outbreaks also had laboratory evidence of ⩾2 infections caused by another enteric pathogen. Twenty-six states reported 46 outbreaks with 1727 illnesses and 144 hospitalizations. Of 38 single-aetiology outbreaks, 66% were caused by STEC O111 (n = 14) or O26 (n = 11), and 84% were transmitted through food (n = 17) or person-to-person spread (n = 15); food vehicles included dairy products, produce, and meats; childcare centres were the most common setting for person-to-person spread. Of single-aetiology outbreaks, a greater percentage of persons infected by Shiga toxin 2-positive strains had haemolytic uraemic syndrome compared with persons infected by Shiga toxin 1-only positive strains (7% vs. 0·8%). Compared with single-aetiology outbreaks, multiple-aetiology outbreaks were more frequently transmitted through water or animal contact.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/isolamento & purificação , Toxina Shiga I/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Feminino , Humanos , Incidência , Masculino , Sistema de Registros , Medição de Risco , Índice de Gravidade de Doença , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa