Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 159(2): 318-32, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303528

RESUMO

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Dieta , Ésteres/administração & dosagem , Ésteres/análise , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação/dietoterapia , Insulina/metabolismo , Resistência à Insulina , Lipogênese , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo
2.
J Biol Chem ; 298(10): 102401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988648

RESUMO

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Assuntos
Diabetes Mellitus Tipo 2 , Lipogênese , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Camundongos , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Malonil Coenzima A/metabolismo , Camundongos Obesos , Palmitatos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
3.
FASEB J ; 36(10): e22546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106538

RESUMO

The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.


Assuntos
Microbioma Gastrointestinal , Ácido Succínico , Animais , Ciclo do Ácido Cítrico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos , Camundongos , Succinatos/metabolismo , Ácido Succínico/metabolismo
4.
J Biol Chem ; 296: 100623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812993

RESUMO

Excessive sugar consumption is a contributor to the worldwide epidemic of cardiometabolic disease. Understanding mechanisms by which sugar is sensed and regulates metabolic processes may provide new opportunities to prevent and treat these epidemics. Carbohydrate Responsive-Element Binding Protein (ChREBP) is a sugar-sensing transcription factor that mediates genomic responses to changes in carbohydrate abundance in key metabolic tissues. Carbohydrate metabolites activate the canonical form of ChREBP, ChREBP-alpha, which stimulates production of a potent, constitutively active ChREBP isoform called ChREBP-beta. Carbohydrate metabolites and other metabolic signals may also regulate ChREBP activity via posttranslational modifications including phosphorylation, acetylation, and O-GlcNAcylation that can affect ChREBP's cellular localization, stability, binding to cofactors, and transcriptional activity. In this review, we discuss mechanisms regulating ChREBP activity and highlight phenotypes and controversies in ChREBP gain- and loss-of-function genetic rodent models focused on the liver and pancreatic islets.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Metabolismo dos Carboidratos , Glucose/metabolismo , Hexoses/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Mutação , Processamento de Proteína Pós-Traducional , Roedores
5.
J Nutr ; 152(11): 2534-2545, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774119

RESUMO

BACKGROUND: Prospective cohort studies have found a relation between sugar-sweetened beverage (SSB) consumption (sodas and fruit drinks) and dyslipidemia. There is limited evidence linking SSB consumption to emerging features of dyslipidemia, which can be characterized by variation in lipoprotein particle size, remnant-like particle (RLP), and apolipoprotein concentrations. OBJECTIVES: To examine the association between SSB consumption and plasma lipoprotein cholesterol, apolipoprotein, and lipoprotein particle size concentrations among US adults. METHODS: We examined participants from the Framingham Offspring Study (FOS; 1987-1995, n = 3047) and the Women's Health Study (1992, n = 26,218). Concentrations of plasma LDL cholesterol, apolipoprotein B (apoB), HDL cholesterol, apolipoprotein A1 (apoA1), triglyceride (TG), and non-HDL cholesterol, as well as total cholesterol:HDL cholesterol ratio and apoB:apoA1 ratio, were quantified in both cohorts; concentrations of apolipoprotein E, apolipoprotein C3, RLP-TG, and RLP cholesterol (RLP-C) were measured in the FOS only. Lipoprotein particle sizes were calculated from nuclear magnetic resonance signals for lipoprotein particle subclass concentrations (TG-rich lipoprotein particles [TRL-Ps]: very large, large, medium, small, and very small; LDL particles [LDL-Ps]: large, medium, and small; HDL particles [HDL-Ps]: large, medium, and small). SSB consumption was estimated from food frequency questionnaire data. We examined the associations between SSB consumption and all lipoprotein and apoprotein measures in linear regression models, adjusting for confounding factors such as lifestyle, diet, and traditional lipoprotein risk factors. RESULTS: SSB consumption was positively associated with LDL cholesterol, apoB, TG, RLP-TG, RLP-C, and non-HDL cholesterol concentrations and total cholesterol:HDL cholesterol and apoB:apoA1 ratios; and negatively associated with HDL cholesterol and apoA1 concentrations (P-trend range: <0.0001 to 0.008). After adjustment for traditional lipoprotein risk factors, SSB consumers had smaller LDL-P and HDL-P sizes; lower concentrations of large LDL-Ps and medium HDL-Ps; and higher concentrations of small LDL-Ps, small HDL-Ps, and large TRL-Ps (P-trend range: <0.0001 to 0.001). CONCLUSIONS: Higher SSB consumption was associated with multiple emerging features of dyslipidemia that have been linked to higher cardiometabolic risk in US adults.


Assuntos
Dislipidemias , Bebidas Adoçadas com Açúcar , Adulto , Feminino , Humanos , Apolipoproteínas , Apolipoproteínas B , Colesterol , HDL-Colesterol , LDL-Colesterol , Lipoproteínas , Tamanho da Partícula , Estudos Prospectivos , Triglicerídeos , Masculino
6.
Curr Diab Rep ; 19(9): 77, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31377934

RESUMO

PURPOSE OF REVIEW: Increased glucose production associated with hepatic insulin resistance contributes to the development of hyperglycemia in T2D. The molecular mechanisms accounting for increased glucose production remain controversial. Our aims were to review recent literature concerning molecular mechanisms regulating glucose production and to discuss these mechanisms in the context of physiological experiments and observations in humans and large animal models. RECENT FINDINGS: Genetic intervention studies in rodents demonstrate that insulin can control hepatic glucose production through both direct effects on the liver, and through indirect effects to inhibit adipose tissue lipolysis and limit gluconeogenic substrate delivery. However, recent experiments in canine models indicate that the direct effects of insulin on the liver are dominant over the indirect effects to regulate glucose production. Recent molecular studies have also identified insulin-independent mechanisms by which hepatocytes sense intrahepatic carbohydrate levels to regulate carbohydrate disposal. Dysregulation of hepatic carbohydrate sensing systems may participate in increased glucose production in the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo
7.
Diabetologia ; 61(2): 317-330, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098321

RESUMO

AIMS/HYPOTHESIS: Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fructose-induced metabolic disease. We hypothesise that common variants in 11 genes involved in fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to exacerbate positive associations between higher SSB intake and glycaemic traits. METHODS: Data from 11 cohorts (six discovery and five replication) in the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided association and interaction results from 34,748 adults of European descent. SSB intake (soft drinks, fruit punches, lemonades or other fruit drinks) was derived from food-frequency questionnaires and food diaries. In fixed-effects meta-analyses, we quantified: (1) the associations between SSBs and glycaemic traits (fasting glucose and fasting insulin); and (2) the interactions between SSBs and 18 independent SNPs related to the ChREBP-FGF21 pathway. RESULTS: In our combined meta-analyses of discovery and replication cohorts, after adjustment for age, sex, energy intake, BMI and other dietary covariates, each additional serving of SSB intake was associated with higher fasting glucose (ß ± SE 0.014 ± 0.004 [mmol/l], p = 1.5 × 10-3) and higher fasting insulin (0.030 ± 0.005 [log e pmol/l], p = 2.0 × 10-10). No significant interactions on glycaemic traits were observed between SSB intake and selected SNPs. While a suggestive interaction was observed in the discovery cohorts with a SNP (rs1542423) in the ß-Klotho (KLB) locus on fasting insulin (0.030 ± 0.011 log e pmol/l, uncorrected p = 0.006), results in the replication cohorts and combined meta-analyses were non-significant. CONCLUSIONS/INTERPRETATION: In this large meta-analysis, we observed that SSB intake was associated with higher fasting glucose and insulin. Although a suggestive interaction with a genetic variant in the ChREBP-FGF21 pathway was observed in the discovery cohorts, this observation was not confirmed in the replication analysis. TRIAL REGISTRATION: Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis) and NCT00005152 (Nurses' Health Study).


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Bebidas , Glicemia/metabolismo , Jejum/sangue , Fatores de Crescimento de Fibroblastos/genética , Insulina/sangue , Edulcorantes , Feminino , Humanos , Masculino
8.
J Clin Gastroenterol ; 52(5): 444-451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28362682

RESUMO

BACKGROUND: Recent genome-wide association studies have identified 2 genetic polymorphisms in association with nonalcoholic fatty liver disease (NAFLD): patatin-like phospholipase domain containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), both of which appear to influence the production of very low density lipoprotein (VLDL). The impact of these genetic variations on lipoprotein metabolism in the setting of nonalcoholic steatohepatitis and liver fibrosis are not fully characterized. MATERIALS AND METHODS: We measured comprehensive lipoprotein profiles by nuclear magnetic resonance among 170 serially recruited patients in an NAFLD registry, and determined their relationships with PNPLA3 and TM6SF2 genotypes. RESULTS: In this cohort, 72% patients had at least 1 allele of either PNPLA3 I148M or TM6SF2 E167K, and 30% carried 2 alleles. In multivariate models adjusting for histologic features of nonalcoholic steatohepatitis and liver fibrosis, PNPLA3 I148M is associated with a decrease in VLDL particle size. Both PNPLA3 I148M and TM6SF2 E167K genotypes were associated with increases in the size of low density lipoprotein (LDL) and high density lipoprotein particles, phenotypes considered atheroprotective. When adjusted for both genotypes, NAFLD activity score, in particular the degree of hepatic steatosis was strongly associated with increases in the size of VLDL particles, the concentration of LDL, especially small LDL particles, and a decrease in the size of high density lipoprotein particles, all of which are linked with a proatherogenic phenotype. CONCLUSIONS: PNPLA3 and TM6SF2 are common genetic variants among NAFLD patients and impact lipoprotein profiles in slightly different ways. The interactions between genotypes, hepatic steatosis, and lipoprotein metabolism shed lights on the pathophysiology of NAFLD, and provide opportunities for personalized treatment in the era of emerging NAFLD therapeutics.


Assuntos
Lipase/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Cirrose Hepática/patologia , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos
9.
Nature ; 484(7394): 333-8, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22466288

RESUMO

The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-ß) that is transcribed from an alternative promoter. ChREBP-ß expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glucose/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Adiposidade , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/metabolismo , Índice de Massa Corporal , Peso Corporal , Células Cultivadas , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Genótipo , Glucose/farmacologia , Intolerância à Glucose/genética , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Homeostase/genética , Humanos , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina/genética , Lipogênese , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
10.
Liver Int ; 36(8): 1213-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26815314

RESUMO

BACKGROUND & AIMS: A major challenge in the management of nonalcoholic fatty liver disease (NAFLD) is to identify patients with nonalcoholic steatohepatitis (NASH) and early liver fibrosis. The progression of NAFLD is accompanied by distinctive changes in very low density lipoprotein (VLDL), a lipoprotein particle produced exclusively in the liver. Herein, we sought to determine the characteristics of VLDL profiles associated with NASH and liver fibrosis. METHODS: We evaluated VLDL profiles of 128 patients from a single centre NAFLD registry, and examined VLDL size, total and subclass VLDL concentrations in relation to NAFLD activity score (NAS), steatohepatitis and liver fibrosis as determined by liver biopsy. RESULTS: A near linear relationship was observed between mean VLDL particle size and NAFLD activity score (NAS). In multivariate models, VLDL particle size was significantly associated with both NAS and NASH, after adjustment for BMI and diabetes. A decrease in small VLDL particle concentration was associated with more advanced liver fibrosis. In receiver operative characteristic analyses, mean VLDL size performed similarly to cytokeratin 18 in predicting NASH, whereas small VLDL particle concentration had similar performance to NAFLD fibrosis score in predicting stage 2 or above liver fibrosis. CONCLUSIONS: The increase in mean VLDL size in NASH and decrease in small VLDL particle concentration in liver fibrosis likely reflect changes in the number and state of hepatocytes associated with NASH and fibrosis. In addition to its value in risk stratification of cardiovascular diseases, circulating VLDL profile may provide information for the staging of NAFLD disease severity.


Assuntos
Lipoproteínas VLDL/sangue , Cirrose Hepática/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Progressão da Doença , Feminino , Humanos , Queratina-18/sangue , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Curva ROC , Sistema de Registros , Índice de Gravidade de Doença , Estados Unidos
11.
Nat Methods ; 9(1): 57-63, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22205519

RESUMO

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).


Assuntos
Ingestão de Energia , Metabolismo Energético , Camundongos/fisiologia , Animais , Composição Corporal , Meio Ambiente , Abrigo para Animais , Camundongos Mutantes/genética , Obesidade/etiologia , Fenótipo
12.
EMBO Rep ; 12(10): 1069-76, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21836635

RESUMO

The nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase SIRT1 is a major metabolic regulator activated by energy stresses such as fasting or calorie restriction. SIRT1 activation during fasting not only relies on the increase in the NAD(+)/NADH ratio caused by energy deprivation but also involves an upregulation of SIRT1 mRNA and protein levels in various metabolic tissues. We demonstrate that SIRT1 expression is controlled systemically by the activation of the cyclic AMP response-element-binding protein upon low nutrient availability. Conversely, in the absence of energetic stress, the carbohydrate response-element-binding protein represses the expression of SIRT1. Altogether, these results demonstrate that SIRT1 expression is tightly controlled at the transcriptional level by nutrient availability and further underscore that SIRT1 is a crucial metabolic checkpoint connecting the energetic status with transcriptional programmes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Sirtuína 1/genética , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Jejum , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Ativação Transcricional
13.
Transl Res ; 255: 140-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563959

RESUMO

While natriuretic peptides (NPs) are primarily known for their renal and cardiovascular actions, NPs stimulate lipolysis in adipocytes and induce a thermogenic program in white adipose tissue (WAT) that resembles brown fat. The biologic effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which binds and degrades NPs. Knockout (KO) of NPRC protects against diet induced obesity and improves insulin sensitivity in obese mice. To determine if pharmacologic blockade of NPRC enhanced the beneficial metabolic actions of NPs in type 2 diabetes, we blocked NP clearance in a mouse model of type 2 diabetes using the specific NPRC ligand ANP(4-23). We found that treatment with ANP(4-23) caused a significant decrease in body weight by increasing energy expenditure and reducing fat mass without a change in lean body mass. The decrease in fat mass was associated with a significant improvement in insulin sensitivity and reduced serum insulin levels. These beneficial effects were accompanied by a decrease in infiltrating macrophages in adipose tissue, and reduced expression of inflammatory markers in both serum and WAT. These data suggest that inhibiting NP clearance may be an effective pharmacologic approach to promote weight loss and enhance insulin sensitivity in type 2 diabetes. Optimizing the therapeutic approach may lead to useful therapies for obesity and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Peptídeos Natriuréticos/metabolismo , Peptídeos Natriuréticos/uso terapêutico , Obesidade/metabolismo , Redução de Peso
14.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37131695

RESUMO

Objective: To investigate the effects of metformin on intestinal carbohydrate metabolism in vivo. Method: Male mice preconditioned with a high-fat, high-sucrose diet were treated orally with metformin or a control solution for two weeks. Fructose metabolism, glucose production from fructose, and production of other fructose-derived metabolites were assessed using stably labeled fructose as a tracer. Results: Metformin treatment decreased intestinal glucose levels and reduced incorporation of fructose-derived metabolites into glucose. This was associated with decreased intestinal fructose metabolism as indicated by decreased enterocyte F1P levels and diminished labeling of fructose-derived metabolites. Metformin also reduced fructose delivery to the liver. Proteomic analysis revealed that metformin coordinately down-regulated proteins involved carbohydrate metabolism including those involved in fructolysis and glucose production within intestinal tissue. Conclusion: Metformin reduces intestinal fructose metabolism, and this is associated with broad-based changes in intestinal enzyme and protein levels involved in sugar metabolism indicating that metformin's effects on sugar metabolism are pleiotropic.

15.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413406

RESUMO

Carbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.


Assuntos
Glucose , Fatores de Transcrição , Animais , Humanos , Camundongos , Glucose/metabolismo , Homeostase , Lipídeos , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 13(1): 4423, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908073

RESUMO

Preservation and expansion of ß-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPß) is a nuclear effector of hyperglycemic stress occurring in ß-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPß is necessary for adaptive ß-cell expansion in response to metabolic challenges. Conversely, chronic excessive ß-cell-specific overexpression of ChREBPß results in loss of ß-cell identity, apoptosis, loss of ß-cell mass, and diabetes. Furthermore, ß-cell "glucolipotoxicity" can be prevented by deletion of ChREBPß. Moreover, ChREBPß-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human ß-cells. We conclude that ChREBPß, whether adaptive or maladaptive, is an important determinant of ß-cell fate and a potential target for the preservation of ß-cell mass in diabetes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Secretoras de Insulina , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Retroalimentação , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
17.
J Biol Chem ; 285(15): 11348-56, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20093359

RESUMO

Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.


Assuntos
Tecido Adiposo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Membrana Transportadoras/genética , Animais , Feminino , Transportador de Glucose Tipo 4/metabolismo , Homeostase , Resistência à Insulina , Lipídeos/química , Camundongos , Camundongos Knockout , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos , Obesidade/metabolismo , Oxigênio/química , Proteínas Quinases S6 Ribossômicas/metabolismo
18.
Cell Metab ; 33(12): 2329-2354, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34619074

RESUMO

Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.


Assuntos
Frutose , Doenças Metabólicas , Dieta , Frutose/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Obesidade/metabolismo
19.
Mol Metab ; 52: 101261, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044180

RESUMO

BACKGROUND: A strong association of obesity and insulin resistance with increased circulating levels of branched-chain and aromatic amino acids and decreased glycine levels has been recognized in human subjects for decades. SCOPE OF REVIEW: More recently, human metabolomics and genetic studies have confirmed and expanded upon these observations, accompanied by a surge in preclinical studies that have identified mechanisms involved in the perturbation of amino acid homeostasis- how these events are connected to dysregulated glucose and lipid metabolism, and how elevations in branched-chain amino acids (BCAA) may participate in the development of insulin resistance, type 2 diabetes (T2D), and other cardiometabolic diseases and conditions. MAJOR CONCLUSIONS: In human cohorts, BCAA and related metabolites are now well established as among the strongest biomarkers of obesity, insulin resistance, T2D, and cardiovascular diseases. Lowering of BCAA and branched-chain ketoacid (BCKA) levels by feeding BCAA-restricted diet or by the activation of the rate-limiting enzyme in BCAA catabolism, branched-chain ketoacid dehydrogenase (BCKDH), in rodent models of obesity have clear salutary effects on glucose and lipid homeostasis, but BCAA restriction has more modest effects in short-term studies in human T2D subjects. Feeding of rats with diets enriched in sucrose or fructose result in the induction of the ChREBP transcription factor in the liver to increase expression of the BCKDH kinase (BDK) and suppress the expression of its phosphatase (PPM1K) resulting in the inactivation of BCKDH and activation of the key lipogenic enzyme ATP-citrate lyase (ACLY). These and other emergent links between BCAA, glucose, and lipid metabolism motivate ongoing studies of possible causal actions of BCAA and related metabolites in the development of cardiometabolic diseases.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Cetoácidos/metabolismo , Obesidade/complicações , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Aminoácidos de Cadeia Ramificada , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Cetoácidos/sangue , Lipogênese , Fígado/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C/metabolismo
20.
Nutrients ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684643

RESUMO

The metabolic syndrome (MetS), defined as the co-occurrence of disorders including obesity, dyslipidemia, insulin resistance, and hepatic steatosis, has become increasingly prevalent in the world over recent decades. Dietary and other environmental factors interacting with genetic predisposition are likely contributors to this epidemic. Among the involved dietary factors, excessive fructose consumption may be a key contributor. When fructose is consumed in large amounts, it can quickly produce many of the features of MetS both in humans and mice. The mechanisms by which fructose contributes to metabolic disease and its potential interactions with genetic factors in these processes remain uncertain. Here, we generated a small F2 genetic cohort of male mice derived from crossing fructose-sensitive and -resistant mouse strains to investigate the interrelationships between fructose-induced metabolic phenotypes and to identify hepatic transcriptional pathways that associate with these phenotypes. Our analysis indicates that the hepatic transcriptional pathways associated with fructose-induced hypertriglyceridemia and hyperinsulinemia are distinct from those that associate with fructose-mediated changes in body weight and liver triglyceride. These results suggest that multiple independent mechanisms and pathways may contribute to different aspects of fructose-induced metabolic disease.


Assuntos
Frutose/efeitos adversos , Hiperinsulinismo/complicações , Hipertrigliceridemia/complicações , Fígado/metabolismo , Análise de Sistemas , Triglicerídeos/metabolismo , Animais , Estudos de Coortes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Haplótipos , Hiperinsulinismo/sangue , Hipertrigliceridemia/sangue , Insulina/sangue , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa