Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem J ; 478(13): 2589-2600, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34129679

RESUMO

The ATP binding cassette (ABC) transporters are membrane proteins that can act as putative receptors for Cry proteins from Bacillus thuringiensis (Bt) in the midgut of different insects. For the beet armyworm, Spodoptera exigua, ABCC2 and ABCC3 have been found to interact with Cry1A proteins, the main insecticidal proteins used in Bt crops, as well as Bt-based pesticides. The ABCC2 has shown to have specific binding towards Cry1Ac and is involved in the toxic process of Cry1A proteins, but the role of this transporter and how it relates with the Cry1A proteins is still unknown. Here, we have characterized the interactions between the SeABCC2 and the main proteins that bind to the receptor. By labeling the Cry1Aa protein, we have found that virtually all of the binding is in an oligomeric state, a conformation that allowed higher levels of specific binding that could not be achieved by the monomeric protein on its own. Furthermore, we have observed that Cry1A proteins can hetero-oligomerize in the presence of the transporter, which is reflected in an increase in binding and toxicity to SeABCC2-expressing cells. This synergism can be one of the reasons why B. thuringiensis co-expresses different Cry1 proteins that can apparently have similar binding preferences. The results from in vitro competition and ex vivo competition showed that Cry1Aa, Cry1Ab and Cry1Ac share functional binding sites. By using Cry1Ab-Cry1Ac chimeras, the presence of domain I from Cry1A proteins was revealed to be critical for oligomer formation.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Spodoptera/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Sobrevivência Celular/genética , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Células Sf9 , Spodoptera/citologia , Spodoptera/genética
2.
Appl Environ Microbiol ; 87(24): e0178721, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586902

RESUMO

Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo.IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for ex vivo toxicity to Sf21 cells.


Assuntos
Proteínas de Bactérias/química , Inseticidas , Microvilosidades/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Animais , Bacillus thuringiensis , Sítios de Ligação , Linhagem Celular , Ligação Proteica , Tripsina
3.
J Invertebr Pathol ; 186: 107439, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663546

RESUMO

Modern agriculture demands for more sustainable agrochemicals to reduce the environmental and health impact. The whole process of the discovery and development of new active substances or control agents is sorely slow and expensive. Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis are specific toxins against caterpillars with a potential capacity to broaden the range of target pests. Site-directed mutagenesis is one of the most approaches used to test hypotheses on the role of different amino acids on the structure and function of proteins. To gain a better understanding of the role of key amino acid residues of Vip3A proteins, we have generated 12 mutants of the Vip3Af1 protein by site-directed mutagenesis, distributed along the five structural domains of the protein. Ten of these mutants were successfully expressed and tested for stability and toxicity against three insect pests (Spodoptera frugiperda, Spodoptera littoralis and Grapholita molesta). The results showed that, to render a wild type fragment pattern upon trypsin treatment, position 483 required an acidic residue, and position 552 an aromatic residue. Regarding toxicity, the change of Met34 to Lys34 significantly increased the toxicity of the protein for one of the three insect species tested (S. littoralis), whereas the other residue substitutions did not improve, or even decreased, insect toxicity, confirming their key role in the structure/function of the protein.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Inseticidas/química , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Spodoptera/efeitos dos fármacos
4.
J Invertebr Pathol ; 142: 60-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27756652

RESUMO

The Vip3Ca protein, discovered in a screening of Spanish collections of Bacillus thuringiensis, was known to be toxic to Chrysodeixis chalcites, Mamestra brassicae and Trichoplusia ni. In the present study, its activity has been tested with additional insect species and we found that Cydia pomonella is moderately susceptible to this protein. Vip3Ca (of approximately 90kDa) was processed to an approximately 70kDa protein when incubated with midgut juice in all tested species. The kinetics of proteolysis correlated with the susceptibility of the insect species to Vip3Ca. The activation was faster to slower in the following order: M. brassicae (susceptible), Spodoptera littoralis (moderately susceptible), Agrotis ipsilon and Ostrinia nubilalis (slightly susceptible). Processing Vip3Ca by O. nubilalis or M. brassicae midgut juice did not significantly changed its toxicity to either insect species, indicating that the low susceptibility of O. nubilalis is not due to a problem in the midgut processing of the toxin. M. brassicae larvae fed with Vip3Ca showed binding of this toxin to the apical membrane of the midgut epithelial cells. Histopathological inspection showed sloughing of the epithelial cells with further disruption, which suggests that the mode of action of Vip3Ca is similar to that described for Vip3Aa. Biotin-labeled Vip3Ca and Vip3Aa bound specifically to M. brassicae brush border membrane vesicles and both toxins competed for binding sites. This result suggests that insects resistant to Vip3A may also be cross-resistant to Vip3C, which has implications for Insect Resistance Management (IRM).


Assuntos
Proteínas de Bactérias/metabolismo , Inseticidas , Mariposas , Animais , Resistência a Inseticidas , Controle Biológico de Vetores/métodos
5.
J Invertebr Pathol ; 127: 32-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25736726

RESUMO

Sugarcane borer (Diatraea saccharalis, F.) is an important corn pest in South America and United States. The aim of the present study was to analyze the susceptibility and binding interactions of three Cry1A proteins and Cry1Fa in a Brazilian D. saccharalis population. The results showed that Cry1Ab was the most active, followed by Cry1Ac, Cry1Fa and Cry1Aa. All Cry1-biotinylated proteins tested bound specifically to the D. saccharalis brush border membrane vesicles (BBMV). Heterologous competition assays showed shared binding sites for all Cry1A proteins and another one shared by Cry1Fa and Cry1Ab. Thus, pyramiding Cry1Aa/Cry1Ac and Cry1F proteins would be a recommended strategy for managing this pest.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/fisiologia , Mariposas/metabolismo , Controle Biológico de Vetores/métodos , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis
6.
Appl Environ Microbiol ; 80(24): 7545-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261517

RESUMO

Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas, which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-terminal sequencing of the trypsin-activated Cry7Aa fragments revealed that processing occurs at Glu(47) for the 70-kDa form or Ile(88) for the 65-kDa form. Homologous binding assays showed specific binding of the two Cry3 proteins and the 65-kDa Cry7Aa fragment to brush border membrane vesicles (BBMV) from C. puncticollis larvae. The 70-kDa fragment did not bind to BBMV. Heterologous-competition assays showed that Cry3Bb, Cry3Ca, and Cry7Aa (65-kDa fragment) competed for the same binding sites. Hence, our results suggest that pest resistance mediated by the alteration of a shared Cry receptor binding site might render all three Cry toxins ineffective.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Besouros/microbiologia , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Ipomoea batatas/parasitologia , Doenças das Plantas/parasitologia , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Besouros/química , Besouros/crescimento & desenvolvimento , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Larva/química , Larva/crescimento & desenvolvimento , Larva/microbiologia
7.
J Invertebr Pathol ; 120: 1-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799046

RESUMO

Binding studies using (125)I-Cry9Ca and biotinylated-Cry1Ba proteins showed the occurrence of independent binding sites for these proteins in Ostrinia nubilalis. Our results, along with previously available binding data, indicate that combinations of Cry1A or Cry1Fa proteins with Cry1Ba and/or Cry9Ca could be a good strategy for the resistance management of O. nubilalis.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Mariposas/metabolismo , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Zea mays/microbiologia , Animais , Toxinas de Bacillus thuringiensis , Sítios de Ligação , Resistência a Inseticidas/genética , Zea mays/genética
8.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672415

RESUMO

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/metabolismo , Mariposas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulação de Acoplamento Molecular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
9.
J Invertebr Pathol ; 113(1): 78-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23415860

RESUMO

Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af proteins from Bacillus thuringiensis were tested for their toxicity against Spodoptera frugiperda and Agrotis ipsilon. Vip3Ad was non-toxic to the two species. Vip3Ae and Vip3Af were significantly more toxic than Vip3Aa against S. frugiperda, both as protoxins and as toxins. Against A. ipsilon, Vip3Ae protoxin was more toxic than Vip3Aa and Vip3Af protoxins. Purification by metal-chelate affinity chromatography significantly affected Vip3Ae toxicity against the two insect species.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Mariposas , Controle Biológico de Vetores , Animais , Eletroforese em Gel de Poliacrilamida
10.
Toxins (Basel) ; 15(1)2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36668875

RESUMO

The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this insect remains a challenge. The susceptibility of A. grandis larvae to proteins (Cry1Ba, Cry7Ab, and Mpp23Aa/Xpp37Aa) from Bacillus thuringiensis Berliner, 1915, with toxicity reported against Coleopteran, has been evaluated. The ingestion of different protein concentrations (which were incorporated into an artificial diet) by the larvae was tested in the laboratory, and mortality was evaluated after one week. All Cry proteins tested exhibited higher toxicity than that the untreated artificial diet. These Cry proteins showed similar results to the control Cry1Ac, with low toxicity to A. grandis, since it killed less than 50% of larvae, even at the highest concentration applied (100 µg·g-1). Mpp/Xpp proteins provided the highest toxicity with a 0.18 µg·g-1 value for the 50% lethal concentration. Importantly, this parameter is the lowest ever reported for this insect species tested with B. thuringiensis proteins. This result highlights the potential of Mpp23Aa/Xpp37Aa for the development of a biotechnological tool aiming at the field control of A. grandis.


Assuntos
Bacillaceae , Bacillales , Bacillus thuringiensis , Besouros , Inseticidas , Gorgulhos , Animais , Larva , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Melhoramento Vegetal , Gossypium
11.
Appl Environ Microbiol ; 78(11): 4048-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447600

RESUMO

Cry1Fa insecticidal protein was successfully radiolabeled with (125)I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (K(d) [dissociation constant] and R(t) [concentration of binding sites]) for these six insect species.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Digestório/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Radioisótopos do Iodo/metabolismo , Lepidópteros/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Sítios de Ligação , Sistema Digestório/ultraestrutura , Lepidópteros/classificação , Microvilosidades/metabolismo , Especificidade da Espécie , Spodoptera/metabolismo , Vesículas Transportadoras/metabolismo
12.
Appl Environ Microbiol ; 78(18): 6759-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773634

RESUMO

Previous studies reported "mode 1" Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently, this resistance has been mapped to an ABC transporter (ABCC2) locus. We report the lack of binding of Cry1Fa to insects derived from this colony and compare our data with those from other insects with ABCC2-associated resistance.


Assuntos
Resistência a Medicamentos , Lepidópteros/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Lepidópteros/genética , Microvilosidades/efeitos dos fármacos , Microvilosidades/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Ligação Proteica
13.
Appl Environ Microbiol ; 78(19): 7163-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865065

RESUMO

Three vip3 genes were identified in two Bacillus thuringiensis Spanish collections. Sequence analysis revealed a novel Vip3 protein class (Vip3C). Preliminary bioassays of larvae from 10 different lepidopteran species indicated that Vip3Ca3 caused more than 70% mortality in four species after 10 days at 4 µg/cm(2).


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Animais , Bacillus thuringiensis/isolamento & purificação , Proteínas de Bactérias/toxicidade , DNA Bacteriano/química , DNA Bacteriano/genética , Larva/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espanha , Análise de Sobrevida
14.
Toxins (Basel) ; 14(1)2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051009

RESUMO

The Asian corn borer, Ostrinia furnacalis (Guenée, 1854), is a highly damaging pest in Asia and the Pacific islands, and larvae feed mainly from corn crops. To determine the suitability of Bt-corn technology for the future control of this pest, understanding the potential to develop resistance to Cry1Ab and the basis of cross-resistance to other Cry1 proteins is of great interest. Here, we have explored the binding of Cry1A proteins to brush border membrane vesicles from two O. furnacalis colonies, one susceptible (ACB-BtS) and one laboratory-selected with Cry1Ab (ACB-AbR). The insects developed resistance to Cry1Ab and showed cross-resistance to Cry1Aa, Cry1Ac, and Cry1F. Binding assays with radiolabeled Cry1Ab and brush border membrane vesicles from susceptible insects showed that Cry1A proteins shared binding sites, though the results were not conclusive for Cry1F. The results were confirmed using radiolabeled Cry1Aa. The resistant insects showed a reduction of the specific binding of both Cry1Ab and Cry1Aa, suggesting that part of the binding sites were lost or altered. Competition binding assays showed full competition between Cry1Ab and Cry1Aa proteins in the susceptible colony but only partial competition in resistant insects, confirming the alteration of some, but not all, binding sites for these two proteins. The binding site model for Cry1A proteins in O. furnacalis is in agreement with the occurrence of multiple membrane receptors for these proteins.


Assuntos
Toxinas de Bacillus thuringiensis/efeitos adversos , Resistência a Inseticidas/genética , Larva/efeitos dos fármacos , Larva/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Zea mays/parasitologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , China , Controle Biológico de Vetores/métodos
15.
Sci Rep ; 12(1): 4578, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301405

RESUMO

Due to their different specificity, the use of Vip3 proteins from Bacillus thuringiensis in combination with the conventionally used Cry proteins in crop protection is being essential to counteract the appearance of insect resistance. Therefore, understanding the mode of action of Vip3 proteins is crucial for their better application, with special interest on the binding to membrane receptors as the main step for specificity. Derived from in vitro heterologous competition binding assays using 125I-Vip3A and other Vip3 proteins as competitors, it has been shown that Vip3 proteins share receptors in Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). In this study, using 125I-Vip3Aa, we have first extended the in vitro competition binding site model of Vip3 proteins to Spodoptera littoralis. With the aim to understand the relevance (in terms of toxicity) of the binding to the midgut sites observed in vitro on the insecticidal activity of these proteins, we have performed in vivo competition assays with S. littoralis larvae, using disabled mutant (non-toxic) Vip3 proteins as competitors for blocking the toxicity of Vip3Aa and Vip3Af. The results of the in vivo competition assays confirm the occurrence of shared binding sites among Vip3 proteins and help understand the functional role of the shared binding sites as revealed in vitro.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Inseticidas/metabolismo , Larva/metabolismo , Controle Biológico de Vetores/métodos , Spodoptera/metabolismo
16.
Pest Manag Sci ; 78(4): 1457-1466, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34951106

RESUMO

BACKGROUND: Binding site models, derived from in vitro competition binding studies, have been widely used for predicting potential cross-resistance among insecticidal proteins from Bacillus thuringiensis. However, because discrepancies have been found between binding data and observed cross-resistance patterns in some insect species, new tools are required to study the functional relevance of the shared binding sites. RESULTS: Here, an in vivo approach has been applied to the competition studies to establish the functional relevance of shared binding sites as determined by in vitro competition assays. Using Cry disabled proteins as competitors in mixed protein overlay assays, we assessed the preference of Cry1Ab, Cry1Fa, and Cry1A.105 proteins for shared binding sites in vivo in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. CONCLUSION: This study shows that in vivo and in vitro binding site competition assays can provide useful information to better ascertain whether different Cry proteins share binding sites and, consequently, whether cross-resistance due to binding site alteration can occur. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Spodoptera/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
Microbiol Mol Biol Rev ; 85(1)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33504654

RESUMO

Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Insetos/microbiologia , Animais , Bacillus thuringiensis/genética , Inseticidas/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Ácaros/microbiologia , Controle Biológico de Vetores , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Toxins (Basel) ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065247

RESUMO

Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Inseticidas/farmacologia , Mariposas/fisiologia , Animais , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/isolamento & purificação , Larva , Ligação Proteica
19.
Environ Microbiol ; 12(10): 2730-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20482744

RESUMO

The insect immune system is comprised of both humoral and cellular components that are mobilized in response to parasitic or pathogenic infections. Activation of the immune response implies a considerable expenditure of energy and that is why insects rely on inducible pathways that are activated after coming into contact with the pathogenic agent. Known as immune priming, insects can prolong the activation of the immune response and transmit their immune status to the next generation. Starting from a laboratory colony of the lepidopteran Spodoptera exigua and using the lytic zone assay as a measure of the immune status, we selected for a sub-colony with high levels of immune activity in the absence of external challenging with bacteria. Immune-activated insect showed characteristics that are typical reported for immune primed insects, such as increased tolerance to pathogens (Bacillus thuringiensis in our case), fitness-cost associated to the immune status, and maternal transmission of the immune status. However, additional analysis revealed that the selection for the immune-activated insects was based on the selection of insects carrying a higher bacterial load in the midgut. Our results suggest that activation of the immune system in S. exigua may not only occur as consequence of the immune priming but also from an increase in midgut microbiota load.


Assuntos
Bacillus thuringiensis/patogenicidade , Trato Gastrointestinal/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Tolerância Imunológica , Spodoptera/imunologia , Animais , Bacillus thuringiensis/crescimento & desenvolvimento , Carga Bacteriana , Biomarcadores/metabolismo , Contagem de Colônia Microbiana , Feminino , Trato Gastrointestinal/microbiologia , Imunidade Inata/imunologia , Larva/microbiologia , Masculino , Spodoptera/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa